Центральная догма биологии, уточненная модель передачи информации. Днк и гены Дезоксирибонуклеиновая кислота. Общие сведения

Все живые существа зависят от трех основных молекул, по существу, во всех своих биологических функциях. Эти молекулы - ДНК, РНК и белок. Две цепочки ДНК, вращаются в противоположных направлениях и расположены рядом друг с другом (антипараллель). Это последовательность четырех азотистых оснований, направленных вдоль остова, которая кодирует биологическую информацию. В соответствии с генетическим кодом, нити РНК преобразуются, чтобы определить последовательность аминокислот в белках. Эти нити РНК изначально созданы, используя цепочки ДНК в качестве шаблона, такой процесс называется транскрипцией.

Без ДНК, РНК и белков никакая биологическая жизнь не существовала бы на Земле. ДНК - интеллектуальная молекула, которая кодирует полный комплект генетических инструкций (геном), необходимых для того, чтобы собирать, поддерживать и воспроизводить каждое живое существо. РНК играет множественные жизненно важные роли в кодировании, декодировании, регулировании и выражении генетики. Основная обязанность РНК состоит в том, чтобы создавать белки, в соответствии с наборами команд, закодированных в клетке ДНК.

ДНК состоит из сахара, азотистого основания и фосфатной группы. РНК так же.

В ДНК азотистое основание состоит из нуклеиновых кислот: цитозина (C), гуанина (G), аденина (A) и тимина (T). Метафизически, каждая из этих нуклеиновых кислот связана с элементными субстанциями планеты: Воздухом, Водой, Огнем и Землей. Когда мы загрязняем эти четыре элемента на Земле, мы загрязняем соответствующую нуклеиновую кислоту в нашей ДНК.

Однако, в РНК азотистое основание состоит из нуклеиновых кислот: цитозина (C), гуанина (G), аденина (A) и урацила (U). Кроме того, каждая из нуклеиновых кислот РНК связана с элементными субстанциями планеты: Воздухом, Водой, Огнем, и Землей. И в ДНК, и в РНК, Митохондриальная ДНК соответствует пятому основному элементу Космическому Эфиру, исходящему только от Матери . Это пример аллотропии, являющейся особенностью небольшого количества химических элементов находиться в двух или более различных формах, известных как аллотропы этих элементов. Аллотропы - это различные структурные модификации элемента. Наша ДНК - аллотроп четырех основных планетарных элементов.

Основная биологическая функция азотистых оснований в ДНК заключается в соединении нуклеиновых кислот. Аденин всегда соединяется с тимином, а гуанин - с цитозином. Они известны как спаренные основания. Урацил присутствует только в РНК, заменяя тимин и соединяясь с аденином.

И РНК, и ДНК используют спаренные основания (мужчина + женщина) как дополнительный язык, который может быть конвертирован в любом направлении между ДНК и РНК под действием соответствующих ферментов. Этот мужской-женский язык или структура спаренных оснований обеспечивает резервную копию всей генетической информации, закодированной внутри двухспиральной ДНК.

Обратное спаренное основание

Все ДНК и РНК функционируют на гендерном принципе спаренных оснований, создавая водородную связь. Спаренные основания должны соединяться в последовательности, позволяя ДНК и РНК взаимодействовать (в соответствии с оригинальным проектом наших 12 Цепочек ДНК, Телом Алмазного Солнца), а также позволяя РНК производить функционирующие белки, строящие звенья, которые синтезируют и корректируют двойную спираль ДНК. ДНК человека была повреждена в результате мутации спаренных оснований и изменения соединений пар или вставок, редактирующих последовательности, посредством сконструированных организмов, таких как вирус. Вмешательство в спаренные основания касается технологии гендерного раскола реверсивной сети Нефелимов (NRG), воздействуя на весь мужской и женский язык и их отношения. Копии ДНК созданы соединением субъединиц нуклеиновой кислоты с мужским-женским спаренным основанием на каждой цепи оригинальной молекулы ДНК. Такое соединение всегда происходит в определенных комбинациях. Изменение основного соединения ДНК, так же как и многие уровни генетических модификаций и генетического контроля, способствуют подавлению синтеза ДНК. Это преднамеренное подавление активации 12 цепей ДНК оригинального проекта, Кремниевой Матрицы, собранной и построенной белками. Это генетическое подавление агрессивно проводилось, начиная с катаклизма Атлантиды. Оно непосредственно связано с подавлением союза иерогамии, который достигается правильным соединением оснований ДНК, с помощью которого можно создать и скомпоновать белки для восстановления огненных письмен ДНК.

Редактирование РНК посредством аспартама

Одним из примеров генетической модификации и экспериментирования с населением является использование аспартама*. Аспартам химически синтезируется от аспартата, ухудшающего функцию связи урацил - тимин в ДНК, а также понижает функции синтеза белка РНК и сообщения между РНК и ДНК. Редактирование РНК посредством добавления или удаления урацила и тимина повторно закодировало митохондрии клетки, при котором митохондриальные повреждения способствовали неврологическим заболеваниям. Тимин - мощный защитник целостности ДНК. Кроме того, понижение урацила производит субстрат аспартата, углекислый газ и аммиак.

Вмешательство в круговорот азота

В результате промышленной революции, введения в действие военного комплекса посредством контактов с Негативными Инопланетянами, за прошедшее столетие общий круговорот азота был значительно изменен. Хотя азот необходим для всех известных форм жизни на Земле, велись войны за ископаемое топливо, преднамеренно форсированные Негативной Инопланетной Программой, загрязняющие Землю и повреждающие ДНК. Азот является компонентом всех аминокислот, которые входят в белки, и присутствует в основаниях, составляющих нуклеиновые кислоты РНК и ДНК. Однако, ведя войны за ископаемое топливо, вынуждающие применять двигатели внутреннего сгорания, создавать химические удобрения и загрязнять окружающую среду транспортными средствами и промышленными предприятиями, люди способствовали серьезной токсичности азота в биологических формах. Окись азота, углекислый газ, метан, аммиак,- все это создает парниковый газ, отравляющий Землю, питьевую воду и океаны. Это загрязнение вызывает повреждение и мутации ДНК.

Элементное изменение тела боли

Таким образом, многие из нас ощутили элементные изменения в нашей крови, частях тела (особенно на поверхности кожи, реагирующей на изменения в крови) и глубокие изменения в наших клетках и тканях. Оживление материи в результате магнитных изменений также проникает на уровни нашего эмоционально-элементного тела, значительно воздействуя на клеточные реакции и память, сохраненные в Инстинктивном Теле (Теле боли).

Этот новый цикл заставляет каждого из нас обратить внимание на наше инстинктивное тело, наше эмоционально-элементное тело боли, и то, что с ним происходит. Отношения солнечных и лунных сил и их совместное воздействие на полярности сил планетарного тела приспосабливаются к этому влиянию на магнитное поле.

К сожалению, непонимание высших принципов Естественного закона, приводит к большому хаосу и страданию у тех, кто с упорством потворствует разрушениям, разделению и насилию, независимо от применяемых методов.

Тем не менее, продолжается массовый исход лунных сил, существ лунной цепи, Павших Ангелов с нашей планеты и Солнечной системы, продолжающееся в настоящее время. Поскольку карантин снят с Солнечной системы, и те, кто соответствуюет Вознесению (или чисты сердцем), будут испытывать глубокую перенастройку своих сакральных энергетических центров, переходя от лунных влияний к солнечным. Эта бифуркация солнечных и лунных сил продолжает изменения не только в эмоционально-элементном теле, но и в сакральном центре и всех репродуктивных органах. Она вносит корректировки или прозрение по отношению ко многим проблемам, связанным с сексуальным страданием, программирование которых проводилось на основе скрытых историй, связанных с сущностями лунной цепи. Магнитные наборы команд Матери и митохондрион восстанавливают Солнечную Женственность и для своих земных детей.

Синтез ДНК

Понимая, что наше эмоционально-элементное тело переходит от атомов на основе карбона к элементам на высшей основе путем высокочастотной активации и планетарных магнитных изменений, мы можем соединить точки в духовном развитии наших собственных тел, связанные с личными алхимическими процессами. При восстановлении софийного тела происходит слияние алхимического преобразования нашей эволюции сознания с научным пониманием синтеза ДНК. Синтеза ДНК имеет такое же значение, как и активация ДНК, играющая важную и непосредственную роль в духовном вознесении. Мать возвращает запись митохондриальной ДНК посредством изменения магнитных потоков, восстанавливая проект нашей крови, мозга и нервной системы для высшего функционирования с нашей истинной оригинальной ДНК.

спартам - это генетически созданный химический препарат, распространяемый и используемый на рынке как пищевая добавка

Перевод: Oreanda Web

Тема сегодняшней лекции – синтез ДНК, РНК и белков. Синтез ДНК называется репликацией или редупликацией (удвоением), синтез РНК – транскрипцией (переписывание с ДНК), синтез белка, проводимый рибосомой на матричной РНК называется трансляцией, то есть переводим с языка нуклеотидов на язык аминокислот.

Мы постараемся дать краткий обзор всех этих процессов, в то же время останавливаясь более подробно на молекулярных деталях, для того чтобы вы получили представление, на какую глубину этот предмет изучен.

Репликация ДНК

Молекула ДНК, состоящая из двух спиралей, удваивается при делении клетки. Удвоение ДНК основано на том, что при расплетении нитей к каждой нити можно достроить комплементарную копию, таким образом получая две нити молекулы ДНК, копирующие исходную.

Здесь также указан один из параметров ДНК, это шаг спирали, на каждый полный виток приходится 10 пар оснований, заметим, что один шаг – это не между ближайшими выступами, а через один, так как у ДНК есть малая бороздка и большая. Через большую бороздку с ДНК взаимодействуют белки, которые распознают последовательность нуклеотидов. Шаг спирали равен 34 ангстрем, а диаметр двойной спирали – 20 ангстрем.

Репликацию ДНК осуществляет фермент ДНК-полимераза. Этот фермент способен наращивать ДНК только на 3΄– конце. Вы помните, что молекула ДНК антипараллельна, разные ее концы называются 3΄-конец и 5΄ - конец. При синтезе новых копий на каждой нити одна новая нить удлиняется в направлении от 5΄ к 3΄ , а другая – в направлении от 3΄ к 5-концу. Однако 5΄ конец ДНК-полимераза наращивать не может. Поэтому синтез одной нити ДНК, той, которая растет в "удобном" для фермента направлении, идет непрерывно (она называется лидирующая или ведущая нить), а синтез другой нити осуществляется короткими фрагментами (они называются фрагментами Оказаки в честь ученого, который их описал). Потом эти фрагменты сшиваются, и такая нить называется запаздывающей, в целом репликация этой нити идет медленней. Структура, которая образуется во время репликации, называется репликативной вилкой.

Если мы посмотрим в реплицирующуюся ДНК бактерии, а это можно наблюдать в электронном микроскопе, мы увидим, что у нее вначале образуется "глазок", затем он расширяется, в конце концов вся кольцевая молекула ДНК оказывается реплицированной. Процесс репликации происходит с большой точностью, но не абсолютной. Бактериальная ДНК-полимераза делает ошибки, то есть вставляет не тот нуклеотид, который был в матричной молекуле ДНК, примерно с частотой 10-6. У эукариот ферменты работают точнее, так как они более сложно устроены, уровень ошибок при репликации ДНК у человека оценивается как 10-7 – 10 -8 . Точность репликации может быть разной на разных участках геном, есть участки с повышенной частотой мутаций и есть участки более консервативные, где мутации происходят редко. И в этом следует различать два разных процесса: процесс появления мутации ДНК и процесс фиксации мутации. Ведь если мутации ведут к летальному исходу, они не проявятся в следующих поколениях, а если ошибка не смертельна, она закрепится в следующих поколениях, и мы сможем ее проявление наблюдать и изучить. Еще одной особенностью репликации ДНК является то, что ДНК-полимераза не может начать процесс синтеза сама, ей нужна «затравка». Обычно в качестве такой затравки используется фрагмент РНК. Если речь идет о геноме бактерии, то там есть специальная точка называемая origin (исток, начало) репликации, в этой точке находится последовательность, которая распознается ферментом, синтезирующим РНК. Он относится к классу РНК-полимераз, и в данном случае называется праймазой. РНК-полимеразы не нуждаются в затравках, и этот фермент синтезирует короткий фрагмент РНК – ту самую «затравку», с которой начинается синтез ДНК.

Транскрипция

Следующий процесс – транскрипция. На нем остановимся подробнее.

Транскрипция – синтез РНК на ДНК, то есть синтез комплементарной нити РНК на молекуле ДНК осуществляется ферментом РНК-полимеразой. У бактерий, например, кишечной палочки – одна РНК-полимераза, и все бактериальные ферменты очень похожи друг на друга; у высших организмов (эукариотов) – несколько ферментов, они называются РНК-полимераза I, РНК-полимераза II, РНК-полимераза III, они также имеют сходство с бактериальными ферментами, но устроены сложнее, в их состав входит больше белков. Каждый вид эукариотической РНК-полимеразы обладает своими специальными функциями, то есть транскрибирует определенный набор генов. Нить ДНК, которая служит матрицей для синтеза РНК при транскрипции называется смысловой или матричной. Вторая нить ДНК называется некодирующей (комплементарная ей РНК не кодирует белки, она "бессмысленная").

В процессе транскрипции можно выделить три этапа. Первый этап - инициация транскрипции – начало синтеза нити РНК, образуется первая связь между нуклеотидами. Затем идет наращивание нити, ее удлинение – элонгация, и, когда синтез завершен, происходит терминация, освобождение синтезированной РНК. РНК-полимераза при этом «слезает» с ДНК и готова к новому циклу транскрипции. Бактериальная РНК-полимераза изучена очень подробно. Она состоит из нескольких белковых-субъединиц: двух α-субъединиц (это маленькие субъединицы), β- и β΄-субъединиц (большие субъединицы) и ω-субъединицы. Вместе они образуют так называемый минимальный фермент, или кор-фермент. К этому кор-ферменту может присоединяться σ-субъединица. σ-субъединица необходима для начала синтеза РНК, для инициации транскрипции. После того, как инициация осуществилась, σ-субъединица отсоединяется от комплекса, и дальнейшую работу (элонгацию цепи) ведет кор-фермент. При присоединении к ДНК σ-субъединица распознает участок, на котором должна начинаться транскрипция. Он называется промотор. Промотор - это последовательность нуклеотидов, указывающих на начало синтеза РНК. Без σ-субъединицы кор-фермент промотор распознать не может. σ-субъединица вместе с кор-ферментом называется полным ферментом, или холоферментом.

Связавшись с ДНК, а именно с промотором, который распознала σ-субъединица, холофермент расплетает двунитевую спираль и начинает синтез РНК. Участок расплетенной ДНК – это точка инициации транскрипции, первый нуклеотид, к которому должен комплементарно быть присоединен рибонуклеотид. Инициируется транскрипция, σ-субъединица уходит, а кор-фермент продолжает элонгацию цепи РНК. Затем происходит терминация, кор-фермент освобождается и становится готов к новому циклу синтеза.

Как происходит элонгация транскрипции?

РНК наращивается на 3΄-конце. Присоединением каждого нуклеотида кор-фермент делает шаг по ДНК и сдвигается на один нуклеотид. Так как все в мире относительно, то можно сказать, что кор-фермент неподвижен, а сквозь него «протаскивается» ДНК. Понятно, что результат будет таким же. Но мы будем говорить о движении по молекуле ДНК. Размер белкового комплекса, составляющего кор-фермент, 150 Ǻ. Размеры РНК-полимеразы - 150×115×110Ǻ. То есть это такая наномашина. Скорость работы РНК-полимеразы – до 50 нуклеотидов в секунду. Комплекс кор-фермента с ДНК и РНК называется элонгационным комплексом. В нем находится ДНК-РНК гибрид. То есть это участок, на котором ДНК спарена с РНК, и 3΄-конец РНК открыт для дальнейшего роста. Размер этого гибрида – 9 пар оснований. Расплетенный участок ДНК занимает примерно 12 пар оснований.

РНК-полимераза связанна с ДНК перед расплетенным участком. Этот участок называется передним дуплексом ДНК, его размер – 10 пар оснований. Полимераза связана также с более длинной частью ДНК, называемой задним дуплексом ДНК. Размер матричных РНК, которые синтезируют РНК-полимеразы у бактерий, могут достигать 1000 нуклеотидов и больше. В эукариотических клетках размер синтезируемых ДНК может достигать 100000 и даже нескольких миллионов нуклеотидов. Правда, неизвестно, существуют ли они в таких размерах в клетках, или в процессе синтеза они могут успеть процессировать.

Элонгационный комплекс довольно стабилен, т.к. он должен выполнить большую работу. То есть, сам по себе он с ДНК не «свалится». Он способен перемещаться по ДНК со скоростью до 50 нуклеотидов в секунду. Этот процесс называется перемещение (или, транслокация). Взаимодействие ДНК с РНК-полимеразой (кор-ферментом) не зависит от последовательности этой ДНК, в отличие от σ-субъединицы. И кор-фермент при прохождении определенных сигналов терминации завершает синтез ДНК.


Разберем более подробно молекулярную структуру кор-фермента. Как было сказано выше, кор-фермент состоит из α- и β-субъединиц. Они соединены так, что образуют как бы «пасть» или «клешню». α-субъединицы находятся в основании этой «клешни», и выполняют структурную функцию. С ДНК и РНК они, по-видимому, не взаимодействуют. ω-субъединица – небольшой белок, который также выполняет структурную функцию. Основная часть работы приходится на долю β- и β΄-субъединиц. На рисунке β΄-субъединица показана наверху, а β-субъединица - внизу.

Внутри «пасти», которая называется главным каналом, находится активный центр фермента. Именно здесь происходит соединение нуклеотидов, образование новой связи при синтезе РНК. Главный канал в РНК-полимеразе – это то место, где во время элонгации находится ДНК. Еще в этой структуре сбоку есть так называемый вторичный канал, по которому подаются нуклеотиды для синтеза РНК.

Распределение зарядов на поверхности РНК-полимеразы обеспечивает ее функции. Распределение очень логично. Молекула нуклеиновой кислоты заряжена отрицательно. Поэтому полость главного канала, где должна удерживаться отрицательно заряженная ДНК, выложена положительными зарядами. Поверхность РНК-полимеразы выполнена отрицательно заряженными аминокислотами, чтобы ДНК к ней не прилипала.

Центральная догма молекулярной биологии - это поток информации от ДНК через РНК на белок : информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов).

ДНК, РНК и белки относятся к линейным полимерам, то есть каждый входящий в их состав мономер соединяется максимум с двумя другими мономерами. Последовательность мономеров кодирует информацию, правила передачи которой описываются центральной догмой.

Общий - встречающиеся у большинства живых организмов; Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента; Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК) Транскрипция (ДНК → РНК) Трансляция (РНК → белок) Зрелая иРНК считывается рибосомами в процессе трансляции.Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

Обратная транскрипция (РНК → ДНК) перенос информации с РНК на ДНК, процесс, обратный нормальной транскрипции, осуществляемый ферментом обратной транскриптазой. Встречается у ретровирусов, например, ВИЧ. Репликация РНК (РНК → РНК) копирование цепи РНК на комплемлементарную ей цепь РНК с помощью фермента РНК-зависимой РНК-полимеразы. Вирусы, содержащие одноцепочечную (например, вирус ящура) или двуцепочечную РНК реплицируются подобным способом. Прямая трансляция белка на матрице ДНК (ДНК → белок) Прямая трансляция была продемонстрирована в клеточных экстрактах кишечной палочки, которые содержали рибосомы, но не иРНК. Такие экстракты синтезировали белки с введённых в систему ДНК, и антибиотик неомицин усиливал этот эффект.

11. Типы матричного синтеза как центральный процесс в передаче, хранении и реали­зации наследственного материала.

Матричная природа синтеза нуклеиновых кислот и белков обеспечивает высокую точность воспроизведения информации .

Генетическая информация генотипа определяет фенотипические признаки клетки - генотип трансформируется в фенотип .

Это направление потока информации включает три типа матричных синтезов:

1. синтез DNA - репликация

2. синтез RNA - транскрипция

3. синтез белка - трансляция

1)Репликация ДНК (ДНК → ДНК) точное удвоение (репликация) ДНК. Репликация осуществляется комплексом белков, которые расплетают хроматин, затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию. Воспроизведение исходного генетического материала в поколениях. 2)Транскрипция (ДНК → РНК) биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу мРНК. Транскрипцию осуществляют факторы транскрипции и РНК-полимераза. 3)Трансляция (РНК → белок) Генетическая информация транслируется в форму полипептидных цепей. Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома. 4) В специальных случаях РНК может переписываться в форму ДНК (обратная транскрипция), а также копироваться в виде РНК (репликация), но белок никогда не может быть матрицей для нуклеиновых кислот.

Репарация - это матричный синтез, исправляющий ошибки в структуре ДНК, вариант ограниченной репликации. Восстанавливает первоначальную структуру ДНК. Матрица – это участок неповреждённой нити ДНК.

    Структура нуклеотидов. Пространственные изомеры (2’-эндо-, 3’-эндо- и др, anti, syn)

НУКЛЕОТИД - сложная химическая группа, встречающаяся в естественном состоянии. Нуклеотиды являются строительным материалом для НУКЛЕИНОВЫХ кислот (ДНК и РНК). Нуклеотиды построены из трех компонентов: пиримидинового или пуринового основания, пентозы и фосморной кислоты. Нуклеотиды связаны между собой в цепь фосфодиэфирной связью. Она образуется за счет этерификации ОН –группы С-3` пентозы одного нуклеотида и ОН-группы фосфатного остатка другого нуклеотида. В результате один из концов полинуклеотидной цепи заканчивается свободным фосфатом (Р-конец или 5`-конец). На другом коце имеется неэтерифицированная ОН-групппа у С-3`пентозы (3`-конец). В живых клетках встречаются также свободные нуклеотиды, представленные в виде различных коэнзимов, к которым относится АТФ.

Все 5 гетероциклических оснований, входящие в входящие в состав нуклеиновых кислот, имеют плоскую конформацию, но это энергетически не выгодно. Поэтому в полинуклеотидах реализуется 2 конформации С3`- эндо и С2`-эндо . С1, 0 и С4 расположены в одной плоскости, С2 и С3 находятся в эндоконформациях, когда они выведены над этой плоскостью, т.е. в направлении связи С4-С5.

Важнейшей хар-кой в определении конформации нуклеотидного звена является взаимное расположение углеводной и гетероциклической частей, которая определяется углом вращения вокруг N- гликозидной связи. Здесь существует 2 области разрешенных конформаций, син- и анти -.

Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК) . Структура ДНК дала ключ к механизму точного воспроизведения - редупликации - генного вещества . Так возникла новая наука - молекулярная биология. Была сформулирована так называемая центральная догма молекулярной биологии: ДНК - РНК - белок. Смысл ее состоит в том, что генетическая информация, записанная в ДНК, реализуется в виде белков, но не непосредственно, а через посредство родственного полимера - рибонуклеиновую кислоту (РНК), и этот путь от нуклеиновых кислот к белкам необратим. Таким образом, ДНК синтезируется на ДНК, обеспечивая собственную редупликацию, то есть воспроизведение исходного генетического материала в поколениях; РНК синтезируется на ДНК, в результате чего происходит переписывание, или транскрипция, генетической информации в форму многочисленных копий РНК; молекулы РНК служат матрицами для синтеза белков - генетическая информация транслируется в форму полипептидных цепей. В специальных случаях РНК может переписываться в форму ДНК ("обратная транскрипция"), а также копироваться в виде РНК (репликация), но белок никогда не может быть матрицей для нуклеиновых кислот (подробнее см. ).

Итак, именно ДНК определяет наследственность организмов, то есть воспроизводящийся в поколениях набор белков и связанных с ними признаков. Биосинтез белка является центральным процессом живой материи, а нуклеиновые кислоты обеспечивают его, с одной стороны, программой, определяющей весь набор и специфику синтезируемых белков, а с другой - механизмом точного воспроизведения этой программы в поколениях. Следовательно, происхождение жизни в ее современной клеточной форме сводится к возникновению механизма наследуемого биосинтеза белков.

БИОСИНТЕЗ БЕЛКОВ

Центральная догма молекулярной биологии постулирует лишь путь передачи генетической информации от нуклеиновых кислот к белкам и, следовательно, к свойствам и признакам живого организма. Изучение механизмов реализации этого пути на протяжении десятилетий, последовавших за формулировкой центральной догмы, вскрыло гораздо более разнообразные функции РНК, чем быть только переносчиком информации от генов (ДНК) к белкам и служить матрицей для синтеза белков.

На рис. 1 представлена общая схема биосинтеза белка в клетке. РНК-посредник (messenger RNA, матричная РНК, мРНК), кодирующая белки, о которой и шла речь выше, - это лишь один из трех главных классов клеточных РНК. Основную их массу (около 80%) составляет другой класс РНК - рибосомные РНК , которые образуют структурный каркас и функциональные центры универсальных белок-синтезирующих частиц - рибосом. Именно рибосомные РНК ответственны - как в структурном, так и в функциональном отношении - за формирование ультрамикроскопических молекулярных машин, называемых рибосомами. Рибосомы воспринимают генетическую информацию в виде молекул мРНК и, будучи запрограммированы последними, делают белки в точном соответствии с данной программой.

Однако, чтобы синтезировать белки, одной только информации или программы недостаточно - нужен еще и материал, из которого их можно делать. Поток материала для синтеза белков идет в рибосомы через посредство третьего класса клеточных РНК - РНК-переносчиков (transfer RNA, транспортные РНК, тРНК). Они ковалентно связывают - акцептируют - аминокислоты, которые служат строительным материалом для беЛков, и в виде аминоацил-тРНК поступают в рибосомы. В рибосомах аминоацил-тРНК взаимодействуют с кодонами - трехнуклеотидными комбинациями - мРНК, в результате чего и происходит декодирование кодонов в процессе трансляции.

РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ

Итак, перед нами набор главных клеточных РНК, определяющих основной процесс современной живой материи - биосинтез белка. Это мРНК, рибосомные РНК и тРНК. РНК синтезируются на ДНК с помощью ферментов - РНК-полимераз, осуществляющих транскрипцию - переписывание определенных участков (линейных отрезков) двутяжевой ДНК в форму однотяжевой РНК. Участки ДНК, кодирующие клеточные белки, переписываются в виде мРНК, тогда как для синтеза многочисленных копий рибосомной РНК и тРНК имеются специальные участки клеточного генома, с которых идет интенсивное переписывание без последующей трансляции в белки.

Химическая структура РНК. Химически РНК очень похожа на ДНК. Оба вещества - это линейные полимеры нуклеотидов. Каждый мономер - нуклеотид - представляет собой фосфорилированный N-гликозид, построенный из остатка пятиуглеродного сахара - пентозы, несущего фосфатную группу на гидроксильной группе пятого углеродного атома (сложноэфирная связь) и азотистое основание при первом углеродном атоме (N-гликозидная связь). Главное химическое различие между ДНК и РНК состоит в том, что сахарный остаток мономера РНК - это рибоза, а мономера ДНК - дезоксирибоза, являющаяся производным рибозы, в котором отсутствует гидроксильная группа при втором углеродном атоме (рис. 2).

Азотистых оснований и в ДНК, и в РНК четыре вида: два пуриновых - аденин (А) и гуанин (G) -и два пиримидиновых - цитозин (С) и урацил (U) или его метилированное производное тимин (Т).

Урацил характерен для мономеров РНК, а тимин - для мономеров ДНК, и это второе различие РНК и ДНК. Мономеры - рибонуклеотиды РНК или дезоксирибонуклеотиды ДНК - образуют полимерную цепь посредством формирования фосфодиэфирных мостиков между сахарными остатками (между пятым и третьим атомами углерода пентозы). Таким образом, полимерная цепь нуклеиновой кислоты - ДНК или РНК - может быть представлена как линейный сахаро-фосфатный остов с азотистыми основаниями в качестве боковых групп.

Макромолекулярная структура РНК. Принципиальное макроструктурное различие двух типов нуклеиновых кислот состоит в том, что ДНК - это единая двойная спираль, то есть макромолекула из двух комплементарно связанных полимерных тяжей, спирально закрученных вокруг общей оси (см. [ , ]), а РНК - однотяжевой полимер. В то же время взаимодействия боковых групп - азотистых оснований - друг с другом, а также с фосфатами и гидроксилами сахаро-фосфатного остова приводят к тому, что однотяжевой полимер РНК сворачивается на себя и скручивается в компактную структуру , подобно сворачиванию полипептидной цепи белка в компактную глобулу. Таким способом уникальные нуклеотидные последовательности РНК могут формировать уникальные пространственные структуры.

Впервые специфическая пространственная структура РНК была продемонстрирована при расшифровке атомной структуры одной из тРНК в 1974 г. [ , ] (рис. 3). Сворачивание полимерной цепи тРНК, состоящей из 76 нуклеотидных мономеров, приводит к формированию очень компактного глобулярного ядра, из которого под прямым углом торчат два выступа. Они представляют собой короткие двойные спирали по типу ДНК, но организованные за счет взаимодействия участков одной и той же цепи РНК. Один из выступов является акцептором аминокислоты и участвует в синтезе полипептидной цепи белка на рибосоме, а другой предназначен для комплементарного взаимодействия с кодирующим триплетом (кодоном) мРНК в той же рибосоме. Только такая структура способна специфически взаимодействовать с белком-ферментом, навешивающим аминокислоту на тРНК, и с рибосомой в процессе трансляции, то есть специфически "узнаваться" ими.

Изучение изолированных рибосомных РНК дало следующий разительный пример формирования компактных специфических структур из еще более длинных линейных полимеров этого типа. Рибосома состоит из двух неравных частей - большой и малой рибосомных субчастиц (субъединиц). Каждая субчастица построена из одной высокополимерной РНК и целого ряда разнообразных рибосомных белков. Длина цепей рибосомных РНК весьма значительна: так, РНК малой субчастицы бактериальной рибосомы содержит более 1500 нуклеотидов, а РНК большой субчастицы - около 3000 нуклеотидов. У млекопитающих, включая человека, эти РНК еще больше - около 1900 нуклеотидов и более 5000 нуклеотидов в малой и большой субчастицах соответственно.

Было показано, что изолированные рибосомные РНК, отделенные от их белковых партнеров и полученные в чистом виде, сами способны спонтанно сворачиваться в компактные структуры, по своим размерам и форме похожие на рибосомные субчастицы ]. Форма большой и малой субчастиц разная, и соответственно различается форма большой и малой рибосомных РНК (рис. 4). Таким образом, линейные цепи рибосомной РНК самоорганизуются в специфические пространственные структуры, определяющие размеры, форму и, по-видимому, внутреннее устройство рибосомных субчастиц, а следовательно, и всей рибосомы.

Минорные РНК. По мере изучения компонентов живой клетки и отдельных фракций тотальной клеточной РНК выяснялось, что тремя главными видами РНК дело не ограничивается. Оказалось, что в природе существует множество других видов РНК. Это, в первую очередь, так называемые "малые РНК", которые содержат до 300 нуклеотидов, часто с неизвестными функциями. Как правило, они ассоциированы с одним или несколькими белками и представлены в клетке в виде рибонуклеопротеидов - "малых РНП" .

Малые РНК присутствуют во всех отделах клетки, включая цитоплазму, ядро, ядрышко, ми-тохондрии. Большая часть тех малых РНП, функции которых известны, участвует в механизмах посттранскрипционной обработки главных видов РНК (RNA processing) - превращении предшественников мРНК в зрелые мРНК (сплайсинг), редактировании мРНК, биогенезе тРНК, созревании рибосомных РНК. Один из наиболее богато представленных в клетках видов малых РНП (SRP) играет ключевую роль в транспорте синтезируемых белков через клеточную мембрану. Известны виды малых РНК, выполняющих регуляторные функции в трансляции. Специальная малая РНК входит в состав важнейшего фермента, ответственного за поддержание редупликации ДНК в поколениях клеток - теломеразы. Следует сказать, что их молекулярные размеры сопоставимы с размерами клеточных глобулярных белков. Таким образом, постепенно становится ясно, что функционирование живой клетки определяется не только многообразием синтезируемых в ней белков, но и присутствием богатого набора разнообразных РНК, из которых малые РНК в значительной мере имитируют компактность и размеры белков.

Рибозимы. Вся активная жизнь построена на обмене веществ - метаболизме, и все биохимические реакции метаболизма происходят с надлежащими для обеспечения жизни скоростями только благодаря высокоэффективным специфическим катализаторам, созданным эволюцией. На протяжении многих десятилетий биохимики были уверены, что биологический катализ всегда и всюду осуществляется белками, называемыми ферментами , или энзимами. И вот в 1982-1983 гг. было показано, что в природе имеются виды РНК, которые, подобно белкам, обладают высокоспецифической каталитической активностью [ , ]. Такие РНК-катализаторы были названы рибозимами. Представлению об исключительности белков в катализе биохимических реакций пришел конец.

В настоящее время рибосому тоже принято рассматривать как рибозим. Действительно, все имеющиеся экспериментальные данные свидетельствуют о том, что синтез полипептидной цепи белка в рибосоме катализируется рибосомной РНК, а не рибосомными белками. Идентифицирован каталитический участок большой рибосомной РНК, ответственный за катализ реакции транспептидации, посредством которой осуществляется наращивание полипептидной цепи белка в процессе трансляции.

Что касается репликации вирусных ДНК, то ее механизм мало чем отличается от редупликации генетического материала - ДНК - самой клетки. В случае же вирусных РНК реализуются процессы, которые подавлены или вовсе отсутствуют в нормальных клетках, где вся РНК синтезируется только на ДНК как на матрице. При инфекции РНК-содержащими вирусами ситуация может быть двоякой. В одних случаях на вирусной РНК как на матрице синтезируется ДНК ("обратная транскрипция"), а уж на этой ДНК транскрибируются многочисленные копии вирусной РНК. В других, наиболее интересных для нас случаях на вирусной РНК синтезируется комплементарная цепь РНК, которая и служит матрицей для синтеза - репликации - новых копий вирусной РНК. Таким образом при инфекции РНК-содержащими вирусами реализуется принципиальная способность РНК детерминировать воспроизведение своей собственной структуры, как это имеет место у ДНК.

Мультифункциональность РНК. Суммирование и обзор знаний о функциях РНК позволяют говорить о необыкновенной многофункциональности этого полимера в живой природе. Можно дать следующий список основных известных функций РНК.

Генетическая репликативная функция: структурная возможность копирования (репликации) линейных последовательностей нуклеотидов через комплементарные последовательности. Функция реализуется при вирусных инфекциях и аналогична главной функции ДНК в жизнедеятельности клеточных организмов - редупликации генетического материала.

Кодирующая функция: программирование белкового синтеза линейными последовательностями нуклеотидов. Это та же функция, что и у ДНК. И в ДНК, и в РНК одни и те же триплеты нуклеотидов кодируют 20 аминокислот белков, и последовательность триплетов в цепи нуклеиновой кислоты есть программа для последовательной расстановки 20 видов аминокислот в полипептидной цепи белка.

Структурообразующая функция: формирование уникальных трехмерных структур. Компактно свернутые молекулы малых РНК принципиально подобны трехмерным структурам глобулярных белков, а более длинные молекулы РНК могут образовывать и более крупные биологические частицы или их ядра.

Функция узнавания: высокоспецифические пространственные взаимодействия с другими макромолекулами (в том числе белками и другими РНК) и с малыми лигандами. Эта функция, пожалуй, главная у белков. Она основана на способности полимера сворачиваться уникальным образом и формировать специфические трехмерные структуры. Функция узнавания является базой специфического катализа.

Каталитическая функция: специфический катализ химических реакций рибозимами. Данная функция аналогична энзиматической функции белков-ферментов.

В целом РНК предстает перед нами столь удивительным полимером, что, казалось бы, ни времени эволюции Вселенной, ни интеллекта Творца не должно было бы хватить на ее изобретение. Как можно было видеть, РНК способна выполнять функции обоих принципиально важных для жизни полимеров - ДНК и белков. Неудивительно, что перед наукой и встал вопрос: а не могло ли возникновение и самодостаточное существование мира РНК предшествовать появлению жизни в ее современной ДНК-белковой форме?

ПРОИСХОЖДЕНИЕ ЖИЗНИ

Белково-коацерватная теория Опарина. Пожалуй, первая научная, хорошо продуманная теория происхождения жизни абиогенным путем была предложена биохимиком А.И. Опариным еще в 20-х годах прошлого века [ , ]. Теория базировалась на представлении, что все начиналось с белков, и на возможности в определенных условиях спонтанного химического синтеза мономеров белков - аминокислот - и белковоподобных полимеров (полипептидов) абиогенным путем. Публикация теории стимулировала многочисленные эксперименты в ряде лабораторий мира, показавшие реальность такого синтеза в искусственных условиях. Теория быстро стала общепринятой и необыкновенно популярной.

Основным ее постулатом было то, что спонтанно возникавшие в первичном "бульоне" белковоподобные соединения объединялись" в коацерватные капли - обособленные коллоидные системы (золи), плавающие в более разбавленном водном растворе. Это давало главную предпосылку возникновения организмов - обособление некой биохимической системы от окружающей среды, ее компартментализацию. Так как некоторые белковоподобные соединения коацерватных капель могли обладать каталитической активностью, то появлялась возможность прохождения биохимических реакций синтеза внутри капель - возникало подобие ассимиляции, а значит, роста коацервата с последующим его распадом на части - размножением. Ассимилирующий, растущий и размножающийся делением коацерват рассматривался как прообраз живой клетки (рис. 5).

Все было хорошо продумано и научно обосновано в теории, кроме одной проблемы, на которую долго закрывали глаза почти все специалисты в области происхождения жизни. Если спонтанно, путем случайных безматричных синтезов в коацервате возникали единичные удачные конструкции белковых молекул (например, эффективные катализаторы, обеспечивающие преимущество данному коацервату в росте и размножении), то как они могли копироваться для распространения внутри коацервата, а тем более для передачи коацерватам-потомкам? Теория оказалась неспособной предложить решение проблемы точного воспроизведения - внутри коацервата и в поколениях - единичных, случайно появившихся эффективных белковых структур.

Мир РНК как предшественник современной жизни. Накопление знаний о генетическом коде, нуклеиновых кислотах и биосинтезе белков привело к утверждению принципиально новой идеи о ТОМ, что все начиналось вовсе не с белков, а с РНК [ - ]. Нуклеиновые кислоты являются единственным типом биологических полимеров, макромолекулярная структура которых, благодаря принципу комплементарности при синтезе новых цепей (подробнее см. ), обеспечивает возможность копирования собственной линейной последовательности мономерных звеньев, другими словами, возможность воспроизведения (репликации) полимера, его микроструктуры. Поэтому только нуклеиновые кислоты, но не белки, могут быть генетическим материалом, то есть воспроизводимыми молекулами, повторяющими свою специфическую микроструктуру в поколениях.

По ряду соображений именно РНК, а не ДНК, могла представлять собой первичный генетический материал.

Во-первых, и в химическом синтезе, и в биохимических реакциях рибонуклеотиды предшествуют дезоксирибонуклеотидам; дезоксирибонуклеотиды - продукты модификации рибонуклеотидов (см. рис. 2).

Во-вторых, в самых древних, универсальных процессах жизненного метаболизма широко представлены именно рибонуклеотиды, а не дезоксирибонуклеотиды, включая основные энергетические носители типа рибонуклеозид-полифосфатов (АТФ и т.п.).

В-третьих, репликация РНК может происходить без какого бы то ни было участия ДНК, а механизм редупликации ДНК даже в современном живом мире требует обязательного участия РНК-затравки в инициации синтеза цепи ДНК.

В-четвертых, обладая всеми теми же матричными и генетическими функциями, что и ДНК, РНК способна также к выполнению ряда функций, присущих белкам, включая катализ химических реакций. Таким образом, имеются все основания рассматривать ДНК как более позднее эволюционное приобретение - как модификацию РНК, специализированную для выполнения функции воспроизведения и хранения уникальных копий генов в составе клеточного генома без непосредственного участия в биосинтезе белков.

После того как были открыты каталитически активные РНК, идея первичности РНК в происхождении жизни получила сильнейший толчок к развитию, и была сформулирована концепция самодостаточного мира РНК, предшествовавшего современной жизни [ , ]. Возможная схема возникновения мира РНК представлена на рис. 6.

Абиогенный синтез рибонуклеотидов и их ковалентное объединение в олигомеры и полимеры типа РНК могли происходить приблизительно в тех же условиях и в той же химической обстановке, что постулировались для образования аминокислот и полипептидов. Недавно А.Б. Четверин с сотрудниками (Институт белка РАН) экспериментально показали, что по крайней мере некоторые полирибонуклеотиды (РНК) в обычной водной среде способны к спонтанной рекомбинации, то есть обмену отрезками цепи, путем транс-эстерификации . Обмен коротких отрезков цепи на длинные, должен приводить к удлинению полирибонуклеотидов (РНК), а сама подобная рекомбинация способствовать структурному многообразию этих молекул. Среди них могли возникать и каталитически активные молекулы РНК.

Даже крайне редкое появление единичных молекул РНК, которые были способны катализировать полимеризацию рибонуклеотидов или соединение (сплайсинг) олигонуклеотидов на комплементарной цепи как на матрице [ , ], означало становление механизма репликации РНК. Репликация самих РНК-катализаторов (рибозимов) должна была повлечь за собой возникновение самореплицирующихся популяций РНК. Продуцируя свои копии, РНК размножались. Неизбежные ошибки в копировании (мутации) и рекомбинации в самореплицирующихся популяциях РНК создавали все большее разнообразие этого мира. Таким образом, предполагаемый древний мир РНК - это "самодостаточный биологический мир, в котором молекулы РНК функционировали и как генетический материал, и как энзимоподобные катализаторы" .

Возникновение биосинтеза белка. Далее на основе мира РНК должно было происходить становление механизмов биосинтеза белка, появление разнообразных белков с наследуемой структурой и свойствами, компартментализация систем биосинтеза белка и белковых наборов, возможно, в форме коацерватов и эволюция последних в клеточные структуры - живые клетки (см. рис. 6).

Проблема перехода от древнего мира РНК к современному белок-синтезирующему миру - наиболее трудная даже для чисто теоретического решения. Возможность абиогенного синтеза по-липептидов и белковоподобных веществ не помогает в решении проблемы, так как не просматривается никакого конкретного пути, как этот синтез мог бы быть сопряжен с РНК и подпасть под генетический контроль. Генетически контролируемый синтез полипептидов и белков должен был развиваться независимо от первичного абиогенного синтеза, своим путем, на базе уже существовавшего мира РНК. В литературе предложено несколько гипотез происхождения современного механизма биосинтеза белка в мире РНК, но, пожалуй, ни одна из них не может рассматриваться как детально продуманная и безупречная с точки зрения физико-химических возможностей. Представлю свою версию процесса эволюции и специализации РНК, ведущего к возникновению аппарата биосинтеза белка (рис. 7), но и она не претендует на законченность.

Предлагаемая гипотетическая схема содержит два существенных момента, кажущихся принципиальными.

Во-первых, постулируется, что абиогенно синтезируемые олигорибонуклеотиды активно рекомбинировали посредством механизма спонтанной неэнзиматической трансэстерификации , приводя к образованию удлиненных цепей РНК и давая начало их многообразию. Именно этим путем в популяции олигонуклеотидов и полинуклеотидов и могли появиться как каталитически активные виды РНК (рибозимы), так и другие виды РНК со специализированными функциями (см. рис. 7). Более того, неэнзиматическая рекомбинация олигонуклеотидов, комплементарно связывающихся с полинуклеотидной матрицей, могла обеспечить сшивание (сплайсинг) фрагментов, комплементарных этой матрице, в единую цепь. Именно таким способом, а не катализируемой полимеризацией мононуклеотидов, могло осуществляться первичные копирование (размножение) РНК. Разумеется, если появлялись рибозимы, обладавшие полимеразной активностью , то эффективность (точность, скорость и продуктивность) копирования на комплементарной. матрице должна была значительно возрастать.

Второй принципиальный момент в моей версии состоит в том, что первичный аппарат биосинтеза белка возник на базе нескольких видов специализированных РНК до появления аппарата энзиматической (полимеразной) репликации генетического материала - РНК и ДНК. Этот первичный аппарат включал каталитически активную прорибосомную РНК, обладавшую пептидил-трансферазной активностью; набор про-тРНК, специфически связывающих аминокислоты или короткие пептиды; другую прорибосомную РНК, способную взаимодействовать одновременно с каталитической прорибосомной РНК, про-мРНК и про-тРНК (см. рис. 7). Такая система уже могла синтезировать полипептидные цепи за счет катализируемой ею реакции транспептидации. Среди прочих каталитически активных белков - первичных ферментов (энзимов) - появились и белки, катализирующие полимеризацию нуклеотидов - репликазы, или НК-полимеразы.

Впрочем, возможно, что гипотеза о древнем мире РНК как предшественнике современного живого мира так и не сможет получить достаточного обоснования для преодоления основной трудности - научно правдоподобного описания механизма перехода от РНК и ее репликации к биосинтезу белка. Имеется привлекательная и детально продуманная альтернативная гипотеза А.Д. Альтштейна (Институт биологии гена РАН), в которой постулируется, что репликация генетического материала и его трансляция - синтез белка - возникали и эволюционировали одновременно и сопряженно, начиная с взаимодействия абиогенно синтезирующихся олигонуклеотидов и аминоацил-нуклеотидилатов - смешанных ангидридов аминокислот и нуклеотидов . Но это уже следующая сказка… ("И Шахразаду застигло утро, и она прекратила дозволенные речи" .)

Литература

. Watson J.D., Crick F.H.C. Molecular structure of nucleic acids // Nature. 1953. V. 171. P. 738-740.

. Watson J.D., Crick F.H.C. Genetic implications of the structure of deoxyribose nucleic acid // Nature 1953 V. 171. P. 964-967.

. Спирин А.С. Современная биология и биологическая безопасность // Вестник РАН. 1997. № 7.

. Spirin A.S. On macromolecular structure of native high-polymer ribonucleic acid in solution // Journal of Molecular Biology. 1960. V. 2. P. 436-446.

. Kirn S.H., Suddath F.L., Quigley GJ. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA // Science. 1974. V. 185. P. 435-40.

. Robertas J.D., Ladner J.E., Finch J.T. et al. Structure of yeast phenylalanine tRNA at 3 A resolution // Nature. 1974. V. 250. P. 546-551.

. Vasiliev V.D., Serdyuk I.N., Gudkov A.T., SPIRin A.S. Self-organization of ribosomal RNA // Sturcture, Function and Genetics of Ribosomes / Eds. Hardesty B. and Kramer G. New York: Springer-Verlag, 1986. P. 129-142.

. Baserga SJ., Steitz J.A. The diverse world of small ribo-nucleoproteins // The RNA World / Eds. Gesteland R.F. and Atkins J.F. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993. P. 359-381.

. Kruger К., Grabowski PJ., Zaug AJ. et al. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena

. Bartel D.P., Szostak J.W. Isolation of new ribozymes from a large pool of random sequences // Science. 1993. V. 261. P. 1411-1418.

. Ekland E.H., Bartel D.P. RNA-catalysed RNA polymerization using nucleoside triphosphates // Nature. 1996 V. 382. P. 373-376.

. Orgel L.E. The origin of life - a review of facts and speculations //Trends in Biochemical Sciences. 1998. V. 23. p. 491-495.

. Альтштейн А.Д. Происхождение генетической системы: гипотеза прогенов // Молекулярная биология. 1987. Т. 21. С. 309-322.

Спирин Александр Сергеевич - академик, директор Института белка РАН, член Президиума РАН.

Генетическая информация содержится в ДНК хромосом в ядре клетки. Однако белковый синтез, процесс, в котором информация, закодированная в гене, используется для определения функций клетки, происходит в цитоплазме. Это разделение отражает тот факт, что человек относится к эукариотам. Клетки человека имеют истинное ядро, содержащее геном, отделенный от цитоплазмы ядерной мембраной. У прокариот, например у кишечной палочки Escherichia coli, ДНК не изолирована в ядре.

Из-за компартментализации (разделения) эукариотических клеток передача информации из ядра в цитоплазму - сложный процесс, вызывающий пристальное внимание молекулярных и клеточных биологов.

Молекулярным посредником между двумя типами информации - генетическим кодом и аминокислотным кодом белков - служит рибонуклеиновая кислота (РНК). Химическая структура РНК подобна таковой у ДНК, за исключением того, что каждый нуклеотид РНК имеет углеводный компонент рибозу вместо дезоксирибозы; кроме того, в одном из пиримидиновых оснований РНК вместо тимина присутствует урацил (У). Еще одно различие между РНК и ДНК - то, что РНК в большинстве организмов существует как одиночная молекула, в то время как ДНК существует в форме двойной спирали.

Информационные отношения между ДНК, РНК и белком тесно переплетены: на основе геномной ДНК напрямую синтезируется последовательность РНК, а уже на ее основе синтезируется последовательность полипептидов. В синтезе и метаболизме ДНК и РНК участвуют специфические белки. Этот поток информации называется центральной догмой молекулярной биологии.

Генетическая информация хранится в ДНК генома в виде кода (генетический код обсуждается далее), в котором последовательность смежных оснований определяет последовательность аминокислот в полипептиде. Сначала по шаблону ДНК синтезируется РНК, этот процесс известен как транскрипция. РНК, несущая закодированную информацию, так называемая матричная РНК (мРНК), перемещается из ядра в цитоплазму, где последовательность мРНК декодируется (переводится), определяя последовательность аминокислот в синтезированном белке.

Процесс перевода (трансляция) происходит в рибосомах, представляющих собой цитоплазматические органеллы с сайтами узнавания для всех задействованных молекул, включая мРНК, участвующие в белковом синтезе. Рибосомы построены из множества различных структурных белков и специализированного типа РНК, известного как рибосомальная РНК (рРНК). При трансляции используется еще один, третий тип РНК, транспортная (тРНК), которая обеспечивает молекулярную связь между кодами, содержащимися в последовательности оснований мРНК и аминокислотной последовательности закодированного белка.

Вследствие взаимозависимого потока информации , представленного центральной догмой, можно обсуждать молекулярную генетику экспрессии генов на любом из трех информационных уровней: ДНК, РНК или белок. Мы начнем с изучения структуры генов в геноме как основы для обсуждения генетического кода, транскрипции и трансляции.