Сколько хромосом в кариотипе человека и шимпанзе. Сколько хромосом у различных животных. Различия в поведении

То, что обезьяна – близкий родственник человека, известно уже давно, шимпанзе среди всех обезьян – наш самый близкий родственник. При исследовании ДНК происхождение человека от обезьяноподобных предков вполне подтверждается. Генетические различия на уровне ДНК между людьми составляют в среднем 1 нуклеотид из 1000 (то есть 0.1%), между человеком и шимпанзе - 1 нуклеотид из 100 (т.е. 1%).

По размеру генома человек и высшие приматы не отличаются друг от друга, но отличаются по количеству хромосом - у человека на одну пару меньше. Как было рассказано на прошлых лекциях, у человека 23 пары хромосом, т.е. всего 46. У шимпанзе 48 хромосом, на одну пару больше. В процессе эволюции у предков человека две разных хромосомы приматов объединились в одну. Подобные изменения числа хромосом встречаются и в эволюции других видов. Они могут быть важны для генетической изоляции группы в процессе видообразования, так как в большинстве случаев особи с разным числом хромосом не дают потомства.

Время расхождения (дивергенции) видов, или другими словами, время существования последнего общего предка для двух видов, можно определить несколькими способами. Первый такой: проводят датировку костных останков и определяют, кому эти останки могли принадлежать, когда мог жить общий предок тех или иных видов. Но костных останков предполагаемых предков человека не так много, чтобы можно было с уверенностью восстановить и датировать полную последовательность форм в процессе антропогенеза. Сейчас используют другой способ датировки времени расхождения человека и остальных приматов. Для этого подсчитывают количество мутаций, накопившихся в одних и тех же генах в каждой из ветвей за время их раздельной эволюции. Скорость накопления этих мутаций более менее известна. Скорость накопления мутаций устанавливают по числу различий в ДНК тех видов, для которых известны палеонтологические датировки расхождения видов по костным останкам. Время расхождения человека с шимпанзе по разным оценкам варьирует от 5,4 до 7 млн. лет назад.

Вы уже знаете, что геном человека полностью прочтен (секвенирован). В прошлом году появилось сообщение, что прочтен также геном шимпанзе. Сравнивая геномы человека и шимпанзе, ученые пытаются выявить те гены, которые “делают нас людьми”. Это было бы легко сделать, если бы после разделения ветвей эволюционировали только гены человека, но это не так, шимпанзе тоже развивались, в их генах тоже накапливались мутации. Поэтому, чтобы понять, в какой ветви произошла мутация – у человека или у шимпанзе - приходится сравнивать их еще и с ДНК других видов, гориллы, орангутана, мыши. То есть то, что есть только у шимпанзе и нет например у орангутана, это чисто «шимпанзиные» замены нуклеотидов. Таким образом, сравнивая нуклеотидные последовательности разных видов приматов, мы можем выделить те мутации, которые произошли только в линии наших предков. Сейчас известно около дюжины генов, которые “делают нас людьми”.

Обнаружены различия между человеком и другими животными по генам обонятельных рецепторов. У человека многие гены обонятельных рецепторов инактивированы. Сам фрагмент ДНК присутствует, но в нем появляются мутации, которые инактивируют этот ген: либо он не транскрибируется, либо он транскрибируется, но с него образуется нефункциональный продукт. Как только прекращается отбор на поддержание функциональности гена, в нем начинают накапливаться мутации, сбивающие рамку считывания, вставляющие стоп-кодоны и т.д. То есть мутации появляются во всех генах, и скорость мутирования примерно постоянная. Удается поддерживать ген функционирующим только за счет того, что мутации, нарушающие важные функции, отбрасываются отбором. Такие инактивированные мутациями гены, которые можно распознать по последовательности нуклеотидов, но накопившие мутации, делающие его неактивным, называются псевдогенами. Всего в геноме млекопитающих около 1000 последовательностей, соответствующих генам обонятельных рецепторов. Из них у мыши 20% псевдогенов, у шимпанзе и макаки инактивирована треть (28-26%), а у человека – более половины (54%) являются псевдогенами.

Псевдогены найдены у человека также среди генов, которые кодируют семейство белков кератинов, входящих в состав волос. Так как волосяной покров у нас меньше, чем у шимпанзе, то понятно, что часть таких генов могла быть инактивирована.

Когда говорят об отличии человека от обезьяны, то в первую очередь выделяют развитие умственных способностей и способность к речи. Найден ген, связанный со способностью говорить. Этот ген выявили, изучая семью с наследственными нарушением речи: неспособностью научиться строить фразы в соответствии с правилами грамматики, сочетавшейся с легкой степенью задержки умственного развития. На слайде представлена родословная этой семьи: кружки – это женщины, квадратики – мужчины, закрашенные фигуры – больные члены семьи. Мутация, ассоциированная с заболеванием, находится в гене FOXP2 (forkhead box P2). У человека достаточно трудно исследовать функции гена, легче это делать у мышей. Используют так называемую технику нокаута. Ген прицельно инактивируют, если знать конкретную последовательность нуклеотидов, то это возможно, после этого у мыши этот ген не работает. У мышей, у которых выключили ген FOXP2 , нарушилось формирование одной из зон мозга в эмбриональный период. Видимо, у человека эта зона связана с освоением речи. Кодирует этот ген фактор транскрипции. Напомним, что на эмбриональной стадии развития факторы транскрипции включают группу генов на тех или иных этапах, которые контролируют превращение клеток в то, во что они должны превратиться.

Чтобы посмотреть, как этот ген эволюционировал, его просеквенировали у разных видов: мыши, макаки, орангутана, гориллы и шимпанзе, после этого сравнили эти последовательности нуклеотидов с человеческой.

Оказалось, что этот ген очень консервативен. Среди всех приматов только у орангутана имелась одна аминокислотная замена, и одна замена у мыши. На слайде у каждой линии видны две цифры, первая показывает число аминокислотных замен, вторая – число так называемых молчащих (синонимических) нуклеотидных замен, чаще всего это замены в третьей позиции кодона, не влияющей на кодируемую аминокислоту. Видно, что молчащие замены накапливаются во всех линиях, то есть мутации в данном локусе не запрещены, если они не ведут к аминокислотным заменам. Это не значит, что не появлялись мутации в белок-кодирующей части, они скорее всего появлялись, но были отсеяны отбором, поэтому мы не можем их зафиксировать. В нижней части рисунка схематично изображена аминокислотная последовательность белка, отмечены места, где произошли две аминокислотные замены человека, которые, видимо, повлияли на функциональные особенности белка FOXP2 .

Если белок эволюционирует с постоянной скоростью (число нуклеотидных замен в единицу времени постоянно), то число замен в ветвях будет пропорционально времени, в течение которого замены накапливались. Время разделения линии грызунов (мыши) и приматов принимается равным 90 млн. лет, время разделения человека и шимпанзе – 5.5 млн лет. Тогда количество замен m, накопившихся суммарно в линии мыши и в линии приматов между точкой разделения с мышью и точкой разделения человека и шимпанзе (см. рисунок), по сравнению с числом замен h в линии человека, должно быть в 31.7 раз больше. Если же в линии человека накопилось больше замен, чем ожидается при постоянной скорости эволюции гена, то говорят об ускорении эволюции. Во сколько раз ускорена эволюция, вычисляют по простой формуле:

A. I.= ( h /5.5) / [ m /(2 x 90 - 5.5)]= 31.7 h / m

Где A.I. (Acceleration Index) – индекс ускорения.

Теперь надо оценить, находится ли отклонение числа замен в линии человека от в пределах случайного, или отклонение достоверно выше ожидаемого. Вероятность того, что в линии человека за 5.5 млн. лет появится 2 аминокислотные замены при том, что вероятность появления замен оценивается по линии мыши как 1/(90+84.6)=1/174.6. При этом используют биноминальное распределение B (h + m , Th/(Th+Tm)), где h - число замен в линии человека, m-число замен в линии мыши: Th=5.5, Tm=174.5.

Каким же образом появилась эта ошибочная цифра? Во-первых, сравнивались лишь те области ДНК, которые кодируют белки, а это лишь крошечная часть (около 3%) всего ДНК. Другими словами, при сравнении оставшиеся 97% объема ДНК просто не принимались во внимание! Вот вам и объективность подхода! Почему же их изначально проигнорировали? Дело в том, что эволюционисты считали некодирующие участки ДНК «мусорными», то есть «бесполезными остатками прошлой эволюции» . И именно здесь эволюционный подход потерпел поражение. За последние годы наука открыла важную роль некодирущей ДНК: она регулирует работу генов, кодирующих белки, «включая» и «выключая» их. (См. )

В наши дни все еще широко распространен миф о 98-99% генетическом сходстве между человеком и шимпанзе.

Теперь известно, что различия в регулировании генов (которые зачастую трудно даже выразить количественно) – не менее важный фактор, определяющий разницу между людьми и обезьянами, чем сама последовательность нуклиотидов в генах. Не удивительно, что большие генетические различия между человеком и шимпанзе продолжают обнаруживаться именно в изначально проигнорированной некодирующей ДНК. Если принять ее во внимание (т.е. оставшиеся 97%), то разница между нами и шимпанзе возрастает до 5–8% , а возможно, и 10–12% (исследования в этой области все еще продолжаются).

Во-вторых, в работе-первоисточнике не производилось непосредственное сравнение последовательностей оснований ДНК, а использовалась довольно грубая и неточная методика , называемая ДНК-гибридизацией: отдельные участки ДНК человека соединялись с участками ДНК шимпанзе. Однако, кроме сходства, на степень гибридизации влияют и другие факторы.

В-третьих, при изначальном сравнении исследователи брали во внимание только замены оснований в ДНК, и не учитывали вставки , которые вносят большой вклад в генетическое различие. В одном из сравнений заданного участка ДНК шимпанзе и человека, с учетом вставок было обнаружено различие в 13,3%

Не малую роль в получении этой ложной цифры сыграла предвзятость эволюционистов и вера в общего предка, что существенно замедлило получение реального ответа на вопрос о том, почему человек и обезьяна настолько отличаются.

Поэтому эволюционисты вынуждены верить, что по каким-то неизвестным причинам на ветке превращения древних обезьян в человека происходила гипербыстрая эволюция: случайные мутации и отбор предположительно создавали за ограниченное количество поколений сложный мозг, особенную стопу и кисть, замысловатый речевой аппарат и другие уникальные свойств человека (заметьте, генетическое различие в соответствующих участках ДНК намного больше общих 5%, см. примеры ниже). И это в то время, как нам известно из фактических живых окаменелостей, .

Значит, в тысячах ветвях был застой (это наблюдаемый факт!), а в родословной человека шла взрывоподобная гипербыстрая эволюция (никогда не наблюдаемая)? Это просто нереальная фантастика! Эволюционная вера не соответствует действительности и противоречит всему, что науке известно о мутациях и генетике.

  1. Y-хромосома человека отличается от Y-хромосомы шимпанзе настолько же сильно, как и от хромосом курицы. В ходе недавнего комплексного исследования ученые сравнили Y-хромосому человека с Y-хромосомой шимпанзе и обнаружили, что они «удивительно разные» . Один класс последовательностей внутри Y-хромосомы шимпанзе отличался более чем на 90% от аналогичного класса последовательностей в Y-хромосоме человека и наоборот. А один класс последовательностей в Y-хромосоме человека вообще «не имел аналога в Y-хромосоме шимпанзе» . Исследователи-эволюционисты ожидали, что структуры Y-хромосомы будут похожими в обоих видах.
  2. У шимпанзе и горилл 48 хромосом, тогда как у нас их всего 46. Любопытно, что у картофеля хромосом еще больше.
  3. В хромосомах человека есть такие гены, которые полностью отсутствуют у шимпанзе. Откуда появились эти гены и их генетическая информация? Например, у шимпанзе нет трех важных генов, которые связаны с развитием воспалительного процесса при реакции человека на болезнь. Это факт отражает разницу, существующую между иммунными системами человека и шимпанзе.
  4. В 2003 году ученые подсчитали отличие в 13,3% между участками, отвечающими за иммунные системы. 19 Ген FOXP2 у шимпанзе вовсе не является речевым, а выполняет совсем иные функции, оказывая различные эффекты на работу одних и тех же генов.
  5. Участок ДНК у человека, определяющий форму руки, сильно отличается от ДНК шимпанзе. При этом, что интересно, отличия обнаружились в некодирующей ДНК. Ирония в том, что эволюционисты, руководствуясь верой в эволюцию, считали такие участки ДНК «мусорными» - «безполезные» остатки эволюции. Наука же продолжает открывать их важную роль.
  6. На конце каждой хромосомы расположена нить повторяющейся последовательности ДНК, которая называется теломер. У шимпанзе и других приматов насчитывается около 23 т.п.н. (1 т.п.н. равно 1000 пар оснований нуклеиновой кислоты) повторяющихся элементов. Люди уникальны среди всех приматов, их теломеры намного короче: длиной всего 10 т.п.н. Этот момент часто умалчивается в эволюционной пропаганде при обсуждении генетического сходства между обезьяной и человеком.

@ Jeff Johnson, www.mbbnet.umn.edu/icons/chromosome.html

В ходе недавнего комплексного исследования ученые сравнили Y-хромосому человека с Y-хромосомоий шимпанзе и обнаружили, что они «удивительно разные». Один класс последовательностеий внутри Y-хромосомы шимпанзе был менее чем на 10% сходен с аналогичным классом последовательностеий в Y-хромосоме человека и наоборот. А один класс последовательностеий в Y-хромосоме человека вообще «не имел аналога в Y-хромосоме шимпанзе». И для того чтобы объяснить, откуда взялись все эти отличия между людьми и шимпанзе, сторонники крупномасштабноий эволюции вынуждены придумывать истории о быстрых всецелых перестроийках и стремительном образовании содержащеий новые гены ДНК, а также регуляторноий ДНК. Но поскольку каждая соответствующая Y-хромосома является единоий и полностью зависит от организма хозяина, наиболее логично предположить, что люди и шимпанзе были сотворены особым образом - отдельно, как совершенно разные существа.

Важно помнить, различные виды организмов отличаются не только последовательностью ДНК. Как сказал генетик-эволюционист Стив Джоунс: «50% ДНК человека похожа на ДНК бананов, но это вовсе не означает, что мы наполовину бананы, либо с головы до пояса, либо от пояса до ног» .

То есть данные указывают на то, что ДНК – это еще не все. Например, митохондрия, рибосомы, эндоплазматическая сеть и цитозоль передаются в неизмененном виде от родителей к потомкам (защита от возможных мутаций в митохондриальной ДНК). И даже сама экспрессия генов контролируется клеткой. Некоторые животные претерпели невероятно сильные генетические изменения, и несмотря на это их фенотип остался практически неизменным.

Это свидетельство является огромной поддержкой воспроизведения «по роду своему» (Бытие 1:24–25 ).

Различия в поведении

Для ознакомления с многочисленными способностями, которые мы часто воспринимаем за должное,

Из школьных учебников по биологии каждому доводилось знакомиться с термином хромосома. Понятие было предложено Вальдейером в 1888 году. Оно переводится буквально как окрашенное тело. Первым объектом исследований стала плодовая мушка.

Общее о хромосомах животных

Хромосома – это структура ядра клетки, в которой хранится наследственная информация. Она образуются из молекулы ДНК, в которой содержится множество генов. Другими словами, хромосома – это молекула ДНК. Ее количество у различных животных неодинаковое. Так, например, у кошки – 38, а у коровы -120. Интересно, что самое маленькое число имеют дождевые черви и муравьи. Их количество составляет две хромосомы, а у самца последних – одна.

У высших животных, так же как и у человека, последняя пара представлена ХУ половыми хромосомами у самцов и ХХ – у самок. Нужно обратить внимание, что число этих молекул для всех животных постоянно, но у каждого вида их количество отличается. Для примера можно рассмотреть содержание хромосом у некоторых организмов: у шимпанзе – 48, речного рака -196, у волка – 78, зайца – 48. Это связано с разным уровнем организации того или иного животного.

На заметку! Хромосомы всегда размещаются парами. Генетики утверждают, что эти молекулы и есть неуловимые и невидимые носители наследственности. Каждая из хромосом содержит в себе множество генов. Некоторые считают, что чем больше этих молекул, тем животное более развитое, а его организм сложнее устроен. В таком случае, у человека хромосом должно насчитываться не 46, а больше, чем у любого другого животного.

Сколько хромосом у различных животных

Необходимо обратить внимание! У обезьян количество хромосом приближено к значению человека. Но у каждого вида результаты отличаются. Итак, у различных обезьян насчитывается следующее количество хромосом:

  • Лемуры имеют в своем арсенале 44-46 молекул ДНК;
  • Шимпанзе – 48;
  • Павианы – 42,
  • Мартышки – 54;
  • Гиббоны – 44;
  • Гориллы – 48;
  • Орангутанг – 48;
  • Макаки – 42.

У семейства псовых (хищных млекопитающих) хромосом больше, чем у обезьян.

  • Так, у волка – 78,
  • у койота – 78,
  • у лисицы малой – 76,
  • а вот у обыкновенной – 34.
  • У хищных зверей льва и тигра присутствуют по 38 хромосом.
  • У домашнего животного кошки – 38, а у его оппонента собаки почти в два раза больше – 78.

У млекопитающих, которые имеют хозяйственное значение, количество этих молекул следующее:

  • кролик – 44,
  • корова – 60,
  • лошадь – 64,
  • свинья – 38.

Познавательно! Самыми большими хромосомными наборами среди животных обладают хомячки. Они имеют 92 в своем арсенале. Также в этом ряду идут ежики. У них есть 88-90 хромосом. А самым маленьким количеством этих молекул наделены кенгуру. Их численность составляет 12. Очень интересен тот факт, что у мамонта 58 хромосом. Образцы взяты из замороженной ткани.

Для большей наглядности и удобства, данные других животных будут представлены в сводке.

Наименование животного и количество хромосом:

Пятнистые куницы 12
Кенгуру 12
Желтая сумчатая мышь 14
Сумчатый муравьед 14
Обыкновенный опоссум 22
Опоссум 22
Норка 30
Барсук американский 32
Корсак (лисица степная) 36
Лисица тибетская 36
Панда малая 36
Кошка 38
Лев 38
Тигр 38
Енот-полоскун 38
Канадский бобр 40
Гиены 40
Мышь домовая 40
Павианы 42
Крысы 42
Дельфин 44
Кролики 44
Человек 46
Заяц 48
Горилла 48
Лисица американская 50
Полосатый скунс 50
Овца 54
Слон (азиатский, саванный) 56
Корова 60
Коза домашняя 60
Обезьяна шерстистая 62
Осел 62
Жираф 62
Мул (гибрид осла и кобылы) 63
Шиншилла 64
Лошадь 64
Лисица серая 66
Белохвостый олень 70
Лисица парагвайская 74
Лисица малая 76
Волк (красный, рыжий, гривистый) 78
Динго 78
Койот 78
Собака 78
Шакал обыкновенный 78
Курица 78
Голубь 80
Индейка 82
Эквадорский хомячок 92
Лемур обыкновенный 44-60
Песец 48-50
Ехидна 63-64
Ежи 88-90

Количество хромосом у разных видов животных

Как видно, каждое животное обладает разным количеством хромосом. Даже у представителей одного семейства показатели отличаются. Можно рассмотреть на примере приматов:

  • у гориллы – 48,
  • у макаки – 42, а у мартышки 54 хромосом.

Почему это так, остается загадкой.

Сколько хромосом у растений?

Наименование растения и количество хромосом:

Видео

Какое количество хромосом у человекообразных обезьян, Вы узнаете из этой статьи.

Сколько хромосом у обезьяны?

Хромосомы – это генетический материал, который находится в клетке организма. В каждой из них содержится молекула ДНК в скрученном виде спирали. Полный набор хромосом именуется кариотипом.

Генетическое сходство человека и человекообразных обезьян просто поражают. ДНК человека и обезьяны совпадают на 98,9%. А количество хромосом отличается всего одной парой.

У шимпанзе их 48, то есть 24 пары, а у человека – 46, то есть 23 пары.

Почему так? Дело в том, что в ходе эволюционного процесса у наших предков две различные хромосомы (переданные от приматов) объединились в одну. Это очень важный момент, который определил генетическую изоляцию и видообразование. Кстати, такие изменения в числе хромосом наблюдаются и у других видов. На каком-то этапе общая ветвь развития общего предка человека и обезьяны разошлась. Начались скоростные накопления мутаций, которые и установили различие в ДНК и количестве хромосом. Приблизительно наше расхождение с шимпанзе случилось в период от 5,4 до 7 млн. лет назад.

У человека 23 пары хромосом, у высших обезьян - 24. Оказывается (к этому все больше склоняются генетики), вторая пара хромосом человека образовалась от слияния пар других хромосом предковых антропоидов, что показано и на представленном в начале главы рисунке. Вот вам и 48 хромосом понгидов против 46 человека! Парижская конференция генетиков и 1971 и 1975 гг. одобрила весьма наглядную таблицу гомологии хромосом человека и трех человекообразных обезьян. На ней видно: шимпанзе - самый близкий наш сородич с почти таким же, как у нас, кариотипом (особенно близок к нам по хромосомам карликовый шимпанзе).

Но не надо думать, что другие, в том числе и низшие, обезьяны очень уж отдалены от человека по строению хромосом. У многих игрунок, некоторых каллицебусов, уакари, даже у лемура вари число хромосом одинаково с людьми - 46 (двойной набор); у капуцинов - 54; у ревунов - 44-52 (разные виды); у мартышек - от 48 до 72; у макаков и павианов - 42; у лангуров - 44; у большинства гиббонов - 44 (у сиаманга - 50). Но родство приматов оценивается, конечно, не только по числу хромосом. Если "вытянуть" все хромосомы каждого вида в одну линию, она у всех видов приматов оказывается одинаковой длины. Меняется лишь количество центромер (т. е. фактически число хромосом), распределение плеч. Одинаково у них и суммарное количество вещества наследственности - ДНК.

В 60-х гг. установлено большое сходство кариотипов человека и многих видов низших обезьян. При изучении филогении хромосом 60 видов приматов от мышиного микроцебуса до человека французский генетик Б. Дютрилло (1979) установил полную аналогию, примерно 70 % неповторяющихся окрашенных полос. Доказательством близкого сходства и родства являются также "человеческие" генетические болезни у обезьян: синдром Дауна, алкаптонурия, аномалии развития. Комплекс гистосовместимости (сродства тканей, необходимого при пересадке органов) локализован в генах на хромосомах шимпанзе , гориллы, орангутана и макака резуса одинаково - окрашенность этих участков у обезьян полностью идентична рисунку на хромосоме 6 человека. Гены, "отвечающие" за кодирование пяти жизненно важных ферментов у капуцина, расположены в хромосомах 2, 9 и 15 - они кодируются точно так же в одинаковых по строению хромосомах человека, но имеющих другую нумерацию.

Но, конечно, наибольшее сходство хромосом установлено у человека с шимпанзе - оно доходит до 90-98 % (по разным авторам). Любопытно запомнить: два вида мартышек, представители одного рода - мартышка Брасса (диплоидной набор хромосом 62) и мартышка талапоин (54 хромосомы) оказываются гомологичными только по 10 парам хромосом, т. е. значительно менее родственными, чем человек и шимпанзе.

Теперь после рассмотрения главных, фундаментальных признаков сходства человека и обезьян по хромосомам будет понятно родство приматов и по другим связанным с генетическим родством показателям. Как мы помним, гены и их вместилище - хромосомы - это участки имеющихся в каждой клетке ядерных (значит, нуклеиновых) кислот, точнее, дезоксирибонуклеиновой кислоты (ДНК). Уже в 60-х гг., сразу за великими открытиями 50-х гг. XX в., когда была установлена роль и структура ДНК, началось ее интенсивное изучение и сопоставление у разных организмов. Так, научились гибридизировать ДНК разных видов. Если ее подогреть, она, нормально двухспиральная, "расплетается" в одиночные нити, на которые можно "нарастить" (наложить) такую же нить ДНК от другого животного, если оно имеет сходные гены. Когда эти нити остынут, они свернутся снова в двойную общую спираль, но лишь настолько, насколько родственны организмы - хозяева этих двух ДНК.

Оказалось, что ДНК человека и птицы гибридизируется на величину 10%, человека и мыши - на 19, человека и более крупных млекопитающих - на 30- 40, но человека и макака резуса - на 66-74%.

Что же касается шимпанзе, то здесь, как упомянуто, гибрид с ДНК человека доходит, по разным авторам, до 90-98 %. Температура, при которой "плавится" эта сращенная ДНК (она разная у гибридов различной близости и поэтому тоже является показателем родства их хозяев), полностью подтверждает особую близость человека с другими приматами.

Когда была обнаружена быстро эволюционировавшая ДНК неядерных образований клетки - митохондрий, скептики выразили сомнения в достоверности данных, полученных на основании сопоставлений ядерной ДНК (хотя хорошо известно, что именно она является основным материалом хромосом, локализованных, как сказано, в ядре клетки): ведь ДНК митохондрий, по мнению некоторых авторов, изменяется в 5-10 раз быстрее ядерной и, таким образом, представляет нам генетические изменения как бы в увеличенном виде.

Калифорнийские биохимики провели исследование (в нем участвовал уже известный нам Алан Вильсон) специально по изучению ДНК митохондрий. Метод, использованный ими, обладает исключительной точностью. Он основан на определении участков ДНК, расщепляемых высокоспецифичными ферментами - рестрикционными эндонуклеазами. Эти ферменты распознают строго определенные последовательности нуклеотидов ДНК и разрезают молекулу только в этих местах. В результате даже незначительные изменения состава или порядка нуклеотидов становятся доступными для анализа.

Путем построения карт участков (или, как говорят ученые, сайтов) действия различных ферментов-рестриктаз можно анализировать весьма близко родственные молекулы ДНК, например, субтипов одного и того же вируса и т. д. И все тот же результат - необычайное родство! И в той же степени, которая установлена уже известными читателю биохимическими и генетическими методами, максимально близки к человеку шимпанзе и гориллы . Дальше отстоит орангутан, еще несколько дальше - гиббоны.

Такое же заключение сделано и при изучении "сателлитной", спутниковой ДНК хромосом, при картировании семейства генов интерферона и др.

После столь большого сходства по хромосомам (ДНК) ни у кого уже не может вызывать удивление "поразительное" сходство белков крови и тканей человека и обезьян - ведь они, белки, получают "программу" от кодирующих их столь близких, как мы видели, родительских субстанций, т. е. от генов, от ДНК! Белки в основном ныне изучаются наряду с иммунологическими методами еще путем определения последовательности аминокислот, порядок, чередование которых, как это стало известно также в 50-е гг., и составляет "физиономию" каждого белка.

Мы уже видели уровень сходства белка альбумина у человека и различных животных. В целом оно выявляется примерно в такой же последовательности и по другим белкам, но иногда бывает выше - по этим показателям африканские антропоиды оказываются ближе к человеку. Вот данные по трансферину - иммунологическая близость выражается в процентах следующим образом: у человека с шимпанзе и гориллой - 100% (полная идентичность!), с обезьянами Старого Света - от 50 до 75, с другими животными - либо ниже 4%, либо нуль, отсутствие сходства. Профессор Г. А. Анненков вполне обосновано предположил, что "высокая степень тождества в строении и функциях распространяется на многие сывороточные белки крови всех (или большинства) приматов".

А вот данные по липопротеинам низкой плотности, играющим важнейшую роль при развитии атеросклероза: иммунологическое сходство их у человека с пресмыкающимися и рыбами-1-10%, с птицами - 10, со свиньями - 35-58, с различными узконосыми обезьянами - 80-85, с шимпанзе - более 90 %. Другой же родственный компонент крови - аполипопротеин, также по данным иммунологического исследования, гомологичен у человека и разных обезьян, но неотличим в плазме людей, шимпанзе и гориллы.

Несопоставимо ни с какими другими животными сходство человека и обезьян по строению и свойствам многих гормонов. Гормон роста очень видоспецифичен, но одинаков у человека и даже макака. Введенный ребенку от обезьян, он будет также эффективно действовать, как такой же гормон от людей (установлено Нобелевским лауреатом американцем Ли Чо Хао). Почти полное тождество установлено недавно (Уэтекем и др., 1982) при изучении нуклеотидной последовательности ДНК, кодирующей гормон инсулин человека и яванского макака, в самом же гормоне, в его белке можно отыскать только две замены в аминокислотной последовательности.

Как показали сухумские эндокринологи Н. П. Гончаров, Г. В. Кация, В. Ю. Бутнев, нет в природе животных, настолько же близких к человеку, как обезьяны в частности павианы, по характеру обмена стероидных гормонов, вырабатываемых надпочечниками и играющих колоссальную роль в системе размножения. Мыши, кролики, крысы, которые, замечу, постоянно используются в исследованиях по стероидогенезу, продуцируют в наибольшем количестве гормон кортикостерон, в то время как у человека и обезьяны преимущественным гормоном этой группы является кортизол. Соотношение двух названных гормонов у обоих приматов почти одинаково и разительно отличается от их пропорций у грызунов.