Бета окисление липидов. Окисление жирных кислот в клетках. Энергетический баланс окисления насыщенных жк с нечетным количеством атомов углерода

ЖИРНЫЕ КИСЛОТЫ - алифатические карбоновые кислоты, многие из которых входят в состав животных и растительных жиров; в организме животных и в растениях свободные Ж. к. и Ж. к., входящие в состав липидов, выполняют чрезвычайно важную функцию - энергетическую и пластическую. Ненасыщенные Ж. к. участвуют в организме человека и животных в биосинтезе особой группы биологически активных веществ - простагландинов (см.). Содержание свободных и эфирносвязанных Ж. к. в сыворотке крови служит дополнительным диагностическим тестом при ряде заболеваний. Ж. к. широко используются для приготовления различных мыл, в производстве каучука и резиновых изделий, лаков, эмалей и олиф.

В зависимости от числа карбоксильных групп в молекуле различают одно-, двух- и многоосновные Ж. к., а по степени насыщенности углеводородного радикала - насыщенные (предельные) и ненасыщенные (непредельные) Ж. к. По числу углеродных атомов в цепи Ж. к. делятся на низшие (С1-С3), средние (С4-С9) и высшие (С10-С26)- Насыщенные Ж. к. имеют общую молекулярную формулу C n H 2 n O 2 . Общая формула ненасыщенных Ж. к. зависит от числа содержащихся в них двойных или тройных связей.

Для обозначения Ж. к. используют рациональную и систематическую номенклатуру; кроме того, многие Ж. к. имеют исторически сложившиеся названия. По рациональной номенклатуре все Ж. к. рассматривают как производные уксусной к-ты, в молекуле к-рой атом водорода метильной группы замещен углеводородным радикалом. По систематической номенклатуре название Ж. к. происходит от названия углеводорода, молекула к-рого построена из того же числа атомов углерода, включая углерод карбоксильной группы, что и молекула Ж. к. (напр., пропан - пропановая к-та, этан - этановая к-та, гексан - гексановая к-та и т. д.). В названии ненасыщенных Ж. к. указывается число двойных связей (моно-, ди-, три-и т. д.) и прибавляется окончание «еновая». Нумерация атомов углерода Ж. к. начинается с углерода карбоксильной (СООН-) группы и обозначается араб, цифрами. Ближайший к COOH-группе C-атом обозначается как альфа, соседний с ним - бета и концевой атом углерода в углеводородном радикале - омега. Двойную связь в молекуле Ж. к. обозначают символом Δ или просто приводят номер углеродного атома, у к-рого расположена двойная связь с указанием цис- или транс-конфигурации цепи. Некоторые наиболее распространенные Ж. к. и их тривиальные, рациональные и систематические названия приведены в таблице 1.

Физические свойства

Низшие Ж. к. представляют собой летучие жидкости с резким запахом, средние - масла с неприятным прогорклым запахом, высшие - твердые кристаллические вещества, практически лишенные запаха.

С водой смешиваются во всех отношениях только муравьиная кислота (см.), уксусная кислота (см.) и пропионовая к-та; у более высоких членов ряда Ж. к. растворимость быстро уменьшается и, наконец, становится равной нулю. В спирте и эфире Ж. к. растворимы хорошо.

Температуры плавления в гомологическом ряду Ж. к. возрастают, но неравномерно. Ж. к. с четным числом C-атомов плавятся при более высокой температуре, чем следующие за ними Ж. к., имеющие на один C-атом больше (табл. 2). В обоих этих рядах (с четным и нечетным числом C-атомов) разность температур плавления двух следующих друг за другом членов постепенно уменьшается.

Такое своеобразное различие между Ж. к. с четным и нечетным числом С-атомов в молекуле проявляется не только в температурах плавления, но в нек-рой степени в хим. и даже в их биол, свойствах. Так, Ж. к. с четным числом C-атомов распадаются, по данным Г. Эмбдена, при кровоизлиянии в печени до ацетона, а Ж. к. с нечетным числом C-атомов - не распадаются.

Ж. к. сильно ассоциированы и даже при температурах, превышающих их температуру кипения, показывают вдвое больший мол. вес, чем это следует из их формулы. Эта ассоциация объясняется возникновением водородных связей между отдельными молекулами Ж. к.

Химические свойства

Химические свойства Ж. к. определяются свойствами их COOH-групп и углеводородного радикала. В COOH-группе связь O-H ослаблена за счет смещения электронной плотности в двойной C=O связи к кислороду, и поэтому протон может быть легко отщеплен. Это приводит к появлению стабильного аниона к-ты:

Сродство карбонилового остатка к электронам может быть частично удовлетворено за счет соседней метиленовой группы, водородные атомы к-рой наиболее активны по сравнению с остальными. Константа диссоциации COOH-группы Ж. к. равна 10 -4 -10 -5 М, т. е. ее величина гораздо ниже, чем у неорганических к-т. Наиболее сильной из Ж. к. является муравьиная к-та. COOH-группа Ж. к. обладает способностью реагировать в водных р-рах с щелочноземельными металлами. Соли высших Ж. к. с этими металлами называются мылами (см.). Мыла обладают свойствами поверхностно-активных веществ - детергентов (см.). Натриевые мыла твердые, калиевые - жидкие. Гидроксил COOH-групп Ж. к. может быть легко замещен на галоген с образованием галогенангидридов, которые широко используются в органических синтезах. При замещении галогена остатком другой к-ты образуются ангидриды Ж. к., при замещении остатком спирта - их сложные эфиры, аммиаком - амиды, гидразином - гидразиды. Наиболее распространены в природе сложные эфиры трехосновного спирта глицерина и высших Ж. к. - жиры (см.). Водород альфа-углеродного атома Ж. к. может быть легко замещен галогеном с образованием галогенсодержащих Ж. к. Непредельные Ж. к. могут существовать в виде цис- и транс-изомеров. Большинство природных ненасыщенных Ж. к. имеют цис-конфигурацию (см. Изомерия). Степень ненасыщенности Ж. к. определяют йодометрическим титрованием двойных связей. Процесс превращения ненасыщенных Ж. к. в насыщенные получил название гидрогенизации, обратный процесс- дегидрогенизации (см. Гидрогенизация).

Природные Ж. к. получают путем гидролиза жиров (их омыления) с последующей дробной перегонкой или хроматографическим разделением освободившихся Ж. к. Неприродные Ж. к. получают путем окисления углеводородов; реакция протекает через стадию образования гидроперекисей и кетонов.

Окисление жирных кислот

Как энергетический материал Ж. к. используются в процессе бета-окисления. В 1904 г. Ф. Кнооп выдвинул гипотезу, объясняющую механизм окисления Ж. к. в животном организме.

Эта гипотеза была построена на основании установления природы конечных продуктов обмена, выделяемых с мочой, после введения животным co-фенил замещенных Ж. к. В опытах Ф. Кноопа введение животным фенильных замещенных Ж. к., содержащих четное число С-атомов, всегда сопровождалось выделением с мочой фенил уксусной к-ты, а содержащих нечетное число С-атомов - выделением бензойной к-ты. На основании этих данных Ф. Кнооп предположил, что окисление молекулы Ж. к. происходит путем последовательного отсечения от нее двууглеродных фрагментов со стороны карбоксильной группы (схема 1):

Гипотеза Ф. Кноопа, получившая название теории бета-окисления, является основой современных представлений о механизме окисления Ж. к. В развитии этих представлений важную роль сыграли следующие методы и открытия: 1) введение радиоактивной метки (14 C) в молекулу Ж. к. для изучения их обмена; 2) установление Муньо (Munoz) и Лелуаром (L. F. Leloir) факта, что для окисления Ж. к. клеточными гомогенатами требуются те же самые кофакторы, что и для окисления пирувата (неорганический фосфат, ионы Mg 2+ , цитохром с, АТФ и какой-либо субстрат цикла Трикарбоновых к-т - сукцинат, фумарат и т. п.); 3) установление факта, что окисление Ж. к., как и субстратов цикла Трикарбоновых к-т (см. Трикарбоновых кислот цикл), протекает только в митохондриях клетки [Ленинджер (A. L. Lehninger) и Кеннеди (Е. P. Kennedy)]; 4) установление роли карнитина в транспорте Ж. к. из цитоплазмы в митохондрии; 5) открытие Ф. Липманном и Ф. Линеном кофермента А; 6) выделение из животных тканей в очищенном виде мультифермент-ного комплекса, ответственного за окисление Ж. к.

Процесс окисления Ж. к. в общих чертах складывается из следующих этапов.

Свободная Ж. к. независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться тем или иным превращениям, в т. ч. окислению, пока она не будет активирована.

Активация Ж. к. протекает в цитоплазме клетки, при участии АТФ, восстановленного КоА (KoA-SH) и ионов Mg 2+ .

Реакция катализируется ферментом тиокиназой:

В результате этой реакции образуется ацил-КоА, являющийся активной формой Ж. к. Выделено и изучено несколько тиокиназ. Одна из них катализирует активацию Ж. к. с углеводородной цепью длиной от C2 до C3, другая - от C4 до С12, третья - от C10 до C22.

Транспорт внутрь митохондрий. Коэнзимная форма Ж. к., так же как и свободные Ж. к., не обладает способностью проникать внутрь митохондрий, где собственно и протекает их окисление.

Установлено, что перенос активной формы Ж. к. в митохондрии осуществляется при участии азотистого основания карнитина. Соединяясь с Ж. к. при помощи фермента ацилкарнитиновой трансферазы, карнитин образует ацилкарнитин, обладающий способностью проникать внутрь митохондриальной мембраны.

В случае пальмитиновой к-ты, напр., образование пальмитил-карнитина представляется следующим образом:

Внутри митохондриальной мембраны при участии КоА и митохондриальной пальмитил-карнитиновой трансферазы происходит обратная реакция - расщепление пальмитил-карнитина; при этом карнитин возвращается в цитоплазму клетки, а активная форма пальмитиновой к-ты пальмитил-КоА переходит внутрь митохондрий.

Первая ступень окисления . Внутри митохондрий при участии дегидрогеназ Ж. к. (ФАД-содержащих ферментов) начинается окисление активной формы Ж. к. в соответствии с теорией бета-окисления.

При этом ацил-КоА теряет два водородных атома в альфа- и бета-положении, превращаясь в ненасыщенный ацил-КоА:

Гидратация . Ненасыщенный ацил-КоА присоединяет молекулу воды при участии фермента еноил-гидратазы, в результате чего образуется бета-гидроксиацил-КоА:

Вторая ступень окисления Ж. к., так же как первая, протекает путем дегидрирования, но в этом случае реакцию катализируют НАД-содержащие дегидрогеназы. Окисление происходит по месту бета-углеродного атома с образованием в этом положении кетогруппы:

Завершающим этапом одного полного цикла окисления является расщепление бета-кетоацил-КоА путем тиолиза (а не гидролиза, как предполагал Ф. Кнооп). Реакция протекает при участии КоА и фермента тиолазы. Образуется укороченный на два углеродных атома ацил-КоА и освобождается одна молекула уксусной к-ты в виде ацетил-КоА:

Ацетил-КоА подвергается окислению в цикле Трикарбоновых к-т до CO 2 и H 2 O, а ацил-КоА снова проходит весь путь бета-окисления, и так продолжается до тех пор, пока распад все укорачивающегося на два углеродных атома ацил-КоА не приведет к образованию последней частицы ацетил-КоА (схема 2).

При бета-окислении, напр, пальмитиновой к-ты, повторяются 7 циклов окисления. Поэтому общий итог ее окисления может быть представлен формулой:

C 15 H 31 COOH + АТФ + 8KoA-SH + 7HАД + 7ФАД + 7H 2 O -> 8CH 3 CO-SKoA + АМФ + 7НАД-H 2 + 7ФАД-H 2 + пирофосфат

Последующее окисление 7 молекул НАД-H 2 дает образование 21 молекулы АТФ, окисление 7 молекул ФАД-H 2 - 14 молекул АТФ и окисление 8 молекул ацетил-КоА в цикле Трикарбоновых кислот - 96 молекул АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на активацию пальмитиновой к-ты, общий энергетический выход при полном окислении одной молекулы пальмитиновой к-ты в условиях животного организма составит 130 молекул АТФ (при полном окислении молекулы глюкозы образуется лишь 38 молекул АТФ). Т. к. изменение свободной энергии при полном сгорании одной молекулы пальмитиновой к-ты составляет - 2338 ккал, а богатая энергией фосфатная связь АТФ характеризуется величиной 8 ккал, нетрудно подсчитать, что примерно 48% всей потенциальной энергии пальмитиновой к-ты при ее окислении в организме используется для ресинтеза АТФ, а оставшаяся часть, по-видимому, теряется в виде тепла.

Небольшое количество Ж. к. подвергается в организме омега-окислению (окислению по месту метильной группы) и альфа-окислению (по месту второго C-атома). В первом случае образуется дикарбоновая к-та, во втором - укороченная на один углеродный атом Ж. к. Оба вида окисления протекают в микросомах клетки.

Синтез жирных кислот

Поскольку любая из реакций окисления Ж. к. является сама по себе обратимой, было выдвинуто предположение, что биосинтез Ж. к. представляет собой процесс, обратный их окислению. Так считалось до 1958 г., пока не было установлено, что в экстрактах печени голубя синтез Ж. к. из ацетата мог протекать только в присутствии АТФ и бикарбоната. Бикарбонат оказался абсолютно необходимым компонентом, хотя сам он в молекулу Ж. к. не включался.

Благодаря исследованиям Уокила (S. F. Wakil), Ф. Линена и Вагелоса (Р. В. Vagelos) в 60-70-х гг. 20 в. было установлено, что фактической единицей биосинтеза Ж. к. является не ацетил-КоА, а малонил-КоА. Последний образуется при карбоксилировании ацетил-КоА:

Именно для карбоксилирования ацетил-КоА и требовались бикарбонат, АТФ, а также ионы Mg2+. Фермент, катализирующий эту реакцию, ацетил-КоА - карбоксилаза содержит в качестве простетической группы биотин (см.). Авидин, ингибитор биотина, угнетает эту реакцию, как и синтез Ж. к. в целом.

Суммарно синтез Ж. к., напр, пальмитиновой, при участии малонил-КоА может быть представлен следующим уравнением:

Как следует из этого уравнения, для образования молекулы пальмитиновой к-ты требуется 7 молекул малонил-КоА и только одна молекула ацетил-КоА.

Процесс синтеза Ж. к. детально изучен у Е. coli и некоторых других микроорганизмов. Ферментная система, именуемая синтетазой жирных кислот, состоит у Е. coli из 7 индивидуальных ферментов, связанных с так наз. ацилпереносящим белком (АПБ). АП Б выделен в чистом виде, и его первичная структура изучена. Мол. вес этого белка равен 9750. В его составе имеется фосфорилированный пантетеин со свободной SH-группой. АП Б не обладает ферментативной активностью. Его функция связана только с переносом ацильных радикалов. Последовательность реакций синтеза Ж. к. у Е. coli может быть представлена в следующем виде:

Далее цикл реакций повторяется, бета-кетокапронил-S-АПБ при участии НАДФ-H 2 восстанавливается в бета-гидроксикапронил-S-АПБ, последний подвергается дегидратации с образованием ненасыщенного гексенил-S-АПБ, который затем восстанавливается в насыщенный капронил-S-АПБ, имеющий углеродную цепь на два атома длиннее, чем бутирил-S-АПБ, и т. д.

Т. о., последовательность и характер реакций в синтезе Ж. к., начиная с образования бета-кетоацил-S-АПБ и кончая завершением одного цикла удлинения цепи на два C-атома, являются обратными реакциями окисления Ж. к. Однако пути синтеза и окисления Ж. к. не пересекаются даже частично.

В тканях животных не удалось обнаружить АПБ. Из печени выделен мультиферментный комплекс, содержащий все ферменты, необходимые для синтеза Ж. к. Ферменты этого комплекса настолько прочно связаны друг с другом, что все попытки изолировать их в индивидуальном виде не увенчались успехом. В комплексе имеются две свободные SH-группы, одна из которых, как и в АПБ, принадлежит фосфорилированному пантетеину, другая - цистеину. Все реакции синтеза Ж. к. протекают на поверхности или внутри этого мультиферментного комплекса. Свободные SH-группы комплекса (а возможно, и гидроксильная группа входящего в его состав серина) принимают участие в связывании ацетил-КоА и малонил-КоА, а во всех последующих реакциях пантетеиновая SH-группа комплекса выполняет такую же роль, как и SH-группа АПБ, т. е. участвует в связывании и переносе ацильного радикала:

Дальнейший ход реакций в животном организме точно такой же, как это представлено выше для Е. coli.

До середины 20 в. считалось, что печень является единственным органом, где происходит синтез Ж. к. Затем было установлено, что синтез Ж. к. происходит также в стенке кишечника, в легочной ткани, в жировой ткани, в костном мозге, в л актирующей молочной железе и даже в сосудистой стенке. Что касается клеточной локализации синтеза, то есть основания считать, что он протекает в цитоплазме клетки. Характерно, что в цитоплазме печеночных клеток синтезируется гл. обр. пальмитиновая к-та. Что касается других Ж. к., то основной путь их образования в печени заключается в удлинении цепи на основе уже синтезированной пальмитиновой кислоты или Ж. к. экзогенного происхождения, поступивших из кишечника. Таким путем образуются, напр., Ж. к., содержащие 18, 20 и 22 С-атома. Образование Ж. к. путем удлинения цепи происходит в митохондриях и микросомах клетки.

Биосинтез Ж. к. в животных тканях регулируется. Давно известно, что печень голодавших животных и животных, больных диабетом, медленно включает 14С-ацетат в Ж. к. То же самое наблюдалось и у животных, к-рым вводили избыточные количества жира. Характерно, что в гомогенатах печени таких животных медленно использовался для синтеза Ж. к. ацетил-КоА, но не малонил-КоА. Это послужило основанием предположить, что реакция, лимитирующая скорость процесса в целом, связана с активностью ацетил-КоА - карбоксилазы. Действительно, Ф. Линен показал, что длинно-цепочечные ацильные производные КоА в концентрации 10 -7 М ингибировали активность этой карбоксилазы. Т. о., само накопление Ж. к. оказывает тормозящее влияние на их биосинтез по механизму обратной связи.

Другим регулирующим фактором в синтезе Ж. к., по-видимому, является лимонная к-та (цитрат). Механизм действия цитрата также связывают с его влиянием на ацетил-КоА - карбоксилазу. В отсутствии цитрата ацетил-КоА - карбоксилаза печени находится в виде неактивного мономера с мол. весом 540 000. В присутствии же цитрата фермент превращается в активный тример, имеющий мол. вес ок. 1 800 000 и обеспечивающий 15- 16-кратное увеличение скорости синтеза Ж. к. Можно допустить, следовательно, что содержание цитрата в цитоплазме печеночных клеток оказывает регулирующее влияние на скорость синтеза Ж. к. Наконец, важное значение для синтеза Ж. к. имеет концентрация НАДФ-Н 2 в клетке.

Обмен ненасыщенных жирных кислот

Получены убедительные доказательства, что в печени животных стеариновая к-та может превращаться в олеиновую, а пальмитиновая - в пальмитоолеиновую к-ту. Эти превращения, протекающие в микросомах клетки, требуют наличия молекулярного кислорода, восстановленной системы пиридиновых нуклеотидов и цитохрома b5. В микросомах может также осуществляться превращение мононенасыщенных к-т в диненасыщенные, напр, олеиновой к-ты в 6,9-октадекадиеновую к-ту. Наряду с десатурацией Ж. к. в микросомах протекает и их элонгация, причем оба эти процесса могут сочетаться и повторяться. Таким путем, напр., из олеиновой к-ты образуются нервоновая и 5, 8, 11-эйкозатетраеновая к-ты.

Вместе с тем ткани человека и ряда животных потеряли способность синтезировать некоторые полиненасыщенные к-ты. К ним относятся линолевая (9,12-октадекадиеновая), линоленовая (6,9,12-октадекатриеновая) и арахидоновая (5, 8, 11, 14-эйкозатетраеновая) к-ты. Эти к-ты относят к категории незаменимых Ж. к. При длительном их отсутствии в пище у животных наблюдается отставание в росте, развиваются характерные поражения со стороны кожи и волосяного покрова. Описаны случаи недостаточности незаменимых Ж. к. и у человека. Линолевая и линоленовая к-ты, содержащие соответственно две и три двойные связи, а также родственные им полиненасыщенные Ж. к. (арахидоновая и др.) условно объединены в группу под названием «витамин F».

Биол, роль незаменимых Ж. к. прояснилась в связи с открытием нового класса физиологически активных соединений - простагландинов (см.). Установлено, что арахидоновая к-та и в меньшей степени линолевая являются предшественниками этих соединений.

Ж. к. входят в состав разнообразных липидов: глицеридов, фосфатидов (см.), эфиров холестерина (см.), сфинголипидов (см.) и восков (см.).

Основная пластическая функция Ж. к. сводится к их участию в составе липидов в построении биол, мембран, составляющих скелет животных и растительных клеток. В биол, мембранах обнаружены гл. обр. эфиры следующих Ж. к.: стеариновой, пальмитиновой, олеиновой, линолевой, линоленовой, арахидоновой и докозагексаеновой. Ненасыщенные Ж. к. липидов биол, мембран могут окисляться с образованием липидных перекисей и гидроперекисей - так наз. перекисное окисление ненасыщенных Ж. к.

В организме животных и человека легко образуются лишь ненасыщенные Ж. к. с одной двойной связью (напр., олеиновая к-та). Гораздо медленнее образуются полиненасыщенные Ж. к., большая часть которых поставляется в организм с пищей (эссенциальные Ж. к.). Существуют специальные жировые депо, из которых после гидролиза (липолиза) жиров Ж. к. могут быть мобилизованы на удовлетворение нужд организма.

Экспериментально показано, что питание жирами, содержащими большие количества насыщенных Ж. к., способствует развитию гиперхолестеринемии; применение же с пищей растительных масел, содержащих большие количества ненасыщенных Ж. к., способствует снижению содержания холестерина в крови (см. Жировой обмен).

Наибольшее внимание медицина уделяет ненасыщенным Ж. к. Установлено, что избыточное окисление их по перекисному механизму может играть существенную роль при развитии различных патол, состояний, напр, при радиационных повреждениях, злокачественных новообразованиях, авитаминозе Е, гипероксии, отравлении четыреххлористым углеродом. Один из продуктов перекисного окисления ненасыщенных Ж. к.- липофусцин - накапливается в тканях при старении. Смесь этиловых эфиров ненасыщенных Ж. к., состоящая из олеиновой к-ты (ок. 15%), линолевой к-ты (ок. 15%) и линоленовой к-ты (ок. 57%), так наз. линетол (см.), используется в профилактике и лечении атеросклероза (см.) и наружно - при ожогах и лучевых поражениях кожи.

В клинике наиболее широко применяются методы количественного определения свободных (неэтерифицированных) и эфирносвязанных Ж. к. Методы количественного определения эфирносвязанных Ж. к. основаны на превращении их в соответствующие гидроксамовые к-ты, которые, взаимодействуя с ионами Fe 3+ , образуют цветные комплексные соли.

В норме в плазме крови содержится от 200 до 450 мг% этерифицированных Ж. к. и от 8 до 20 мг% неэтерифицированных Ж. к. Повышение содержания последних отмечается при диабете, нефрозах, после введения адреналина, при голодании, а также при эмоциональном стрессе. Понижение содержания неэтерифицированных Ж. к. наблюдается при гипотиреозах, при лечении глюкокортикоидами, а также после инъекции инсулина.

Отдельные Ж. к.- см. статьи по их названию (напр., Арахидоновая кислота , Арахиновая кислота , Капроновая кислота , Стеариновая кислота и др.). См. также Жировой обмен , Липиды , Холестериновый обмен .

Таблица 1. НАЗВАНИЯ И ФОРМУЛЫ НЕКОТОРЫХ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ ЖИРНЫХ КИСЛОТ

Тривиальное название

Рациональное название

Неразветвленные насыщенные жирные кислоты (CnH2n+1COOH)

Муравьиная

Метановая

Уксусная

Этановая

Пропионовая

Пропановая

Масляная

Бутановая

Валериановая

Пентановая

Капроновая

Гексановая

Энантовая

Гептановая

Каприловая

Октановая

Пеларгоновая

Нонановая

Каприновая

Декановая

Ундекановая

Лауриновая

Додекановая

Тридекановая

Миристиновая

Тетрадекановая

Пентадекановая

Пальмитиновая

Гексадекановая

Маргариновая

Гептадекановая

Стеариновая

Октадекановая

Понадекановая

Арахиновая

Эйкозановая

Генэйкозановая

Бегеновая

Докозановая

Лигноцериновая

Тетракозановая

Керотиновая

Гексакозановая

Монтановая

Октакозановая

Мелиссиновая

Триаконтановая

СН3(СН2)28СООН

Лацериновая

Дотриаконтановая

СН3(СН2)30СООН

Разветвленные насыщенные жирные кислоты (CnH2n-1COOH)

Туберкулостеариновая

10-метилоктадекановая

Фтионовая

3, 13, 19-триметил-трикозановая

Неразветвленные мононенасыщенные жирные кислоты (CnH2n-1COOH)

Кротоновая

Капролеиновая

9-деценовая

CH2=CH(CH2)7COOH

Лауролеиновап

Дис-9-додеценовая

СН3СН2СН=СН(СН2)7СООН

Дис-5-додеценовая

СН3(СН2)5СН=СН(СН2)3СООН

Миристолеиновая

Дис-9-тетрадеценовая

СН3(СН2)3СН=СН(СН2)7СООН

Пальм олеиновая

Дис-9-гексадеценовая

СН3(СН2)5СН=СН(СН2)7СООН

Олеиновая

СН3(СН2)7СН=СН(СН2)7СООН

Элаидиновая

СН3(СН2)7СН=СН(СН2)7СООН

Петрозелиновая

СН3(СН2)10СН=СН(СН2)4СООН

Петроселандовая

СН3(СН2)10СН=СН(СН2)4СООН

Вакценовая

СН3(СН2)5СН=СН(СН2)9СООН

Гадолеиновая

Дис-9-эйкозеновая

СН3(СН2)9СН=СН(СН2)7СООН

Цетолеиновая

Цис-11-докозеновая

СН3(СН2)9СН=СН(СН2)9СООН

Эруковая

Цис-13-докозеновая

СН3(СН2)7СН=СН(СН2)11СООН

Нервоновая

Цис-15-тетракозеновая

СН3(СН2)7СН=СН(СН2)13СООН

Ксименовая

17-гексакозеновая

СН3(СН2)7СН=СН(СН2)15СООН

Люмекеиновая

21-триаконтеновая

СН3(СН2)7СН=СН(СН2)19СООН

Неразветвленные полиненасыщенные жирные кислоты (CnH2n-xCOOH)

Линолевая

Линэлаидиновая

СН3(СН2)4СН=СНСН2СН=СН(СН2)7СООН

Линоленовая

Линоленэлаидиновая

СН3СН2СН=СНСН2СН=СНСН2СН=СН(СН2)7СООН

альфа-Элеостеариновая

бета-Элеостеариновая

СН3(СН2)3СН=СНСН=СНСН=СН(СН2)7СООН

гамма-Линоленовая

СН3(СН2)4СН=СНСН2СН=СНСН2СН=СН(СН2)4СООН

Пуницивая

СН3(СН2)3СН=СНСН=СНСН=СН(СН2)7СООН

Гомо-гамма-линоленовая

Цис- 8, 11, 14, 17-эйкозатриеновая

СН3(СН2)7СН=СНСН2СН=СНСН2СН=СН(СН2)3СООН

Арахидоновая

Цис-5, 8, 11, 14-эйкозатетраеновая

СН3(СН2)4СН=СНСН2СН==СНСН2СН=СНСН2СН=СН(СН2)3СООН

Цис-8, 11, 14, 17-эйкозатетраеновая

СН3СН2СН=СНСН2СН=СНСН2СН=СНСН2СН=СН(СН2)6СООН

Тимнодоновая

4, 8, 12, 15, 18-эйкозапен-таеновая

СН3СН=СНСН2СН=СНСН2СН=СН(СН2)2СН=СН(СН2)2СН=СН(СН2)2СООН

Клупанодоновая

4, 8, 12, 15, 19-докозапентаеновая

СН3СН2СН=СН(СН2)2СН==СНСН2СН=СН(СН2)2СН=СН(СН2)2СН=СН(СН2)2СООН

Цис-4, 7, 10, 13, 16, 19-докозагексаеновая

СН3(СН2СН=СН)6(СН2)2СООН

Низиновая

4, 8, 12, 15, 18, 21-тетракозагексаеновая

СН3СН2СН=СНСН2СН=СНСН2СН=СНСН2СН=СН(СН2)2СН=СН(СН2)2СН=СН(СН2)2СООН

Энантовая

Каприловая

Пеларгоновая

Каприновая

Ундециловая

Лауриновая

Тридециловая

Миристиновая

Пентадециловая

Пальмитиновая

Маргариновая

Стеариновая

Нонадециловая

Арахиновая

* При давлении 100 мм рт. ст.

Библиография: Владимиров Ю. А. и Арчаков А. И. Перекисное окисление липидов в биологических мембранах, М., 1972; Зиновьев А. А. Химия жиров, М., 1952; H ь ю с х о л м Э. и Старт К. Регуляция метаболизма, пер. с англ., М., 1977; ПерекалинВ. В. и Зонне С. А. Органическая химия, М., 1973; Biochemistry and methodology of lipids, ed. by A. R. Jonson a. J. B. Davenport, N. Y., 1971; Fatty acids, ed. by K. S. Markley, pt 1-3, N. Y.-L., 1960-1964, bibliogr.; Lipid metabolism, ed. by S. J. Wakil, N. Y.-L., 1970.

A. H. Климов, А. И. Арчаков.

Триглицериды в форме хиломикрон из эпителиальных клеток тонкого кишечника поступают в печень, легкие, сердце, мышцы и другие органы, где они гидролизуются на глицерин и жирные кислоты. Последние могут быть окислены в высокоэкзергоническом метаболическом пути, известным как }

где n - количество атомов углерода в молекуле жирной кислоты.

Энергетический расчёт β-окисления для некоторых жирных кислот представлен в виде таблицы.

Жирная кислота Кол-во молекул ATP генерируемых на 1 молекулу жирной кислоты Кол-во затраченных молекул ATP Общий энергетический выход молекул ATP
Каприловая кислота C 7 H 15 COOH 63 2 63-2=61
Лауриновая кислота С 11 Н 23 COOH 97 2 97-2=95
Миристиновая кислота С 13 Н 27 СООН 102 2 102-2=100
Пентадециловая кислота С 14 Н 29 СООН 110,5 2 110,5-2=108,5
Пальмитиновая кислота С 15 Н 31 СООН 131 2 131-2=129
Маргариновая кислота С 16 Н 33 СООН 139,5 2 139,5-2=137,5
Стеариновая кислота С 17 Н 35 СООН 148 2 148-2=146
Арахиновая кислота С 19 Н 39 СООН 165 2 165-2=163

Внемитохондриальное окисление жирных кислоты

Помимо β-окисления жирных кислот, происходящего в митохондриях существует и внемитохондриальное окисление. Жирные кислоты, имеющие бóльшую длину цепи (от С 20), не могут быть окислены в митохондриях из-за наличия плотной двойной мембраны, которая воспрепятствует процессу переноса их через межмембранное пространство. Поэтому окисление длиноцепочечных жирных кислот (С 20 -С 22 и более) происходит в пероксисомах . В пероксисомах процесс β-окисления жирных кислот протекает в модифицированном виде. Продуктами окисления в данном случае являются ацетил-CoA, октаноил-CоА и пероксид водорода Н 2 О 2 . Ацетил-CоА образуется на стадии, катализируемой FAD-зависимой дегидрогеназой. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс β-окисления останавливается при образовании октаноил-CоА.

Данный процесс не сопряжён с окислительным фосфорилированием и генерацией ATP и поэтому октаноил-CоА и ацетил-CоА переходят с CоА на карнитин и направляются в митохондрии, где окисляются с образованием ATP .

Активация пероксисомального β-окисления происходит при избыточном содержании в потребляемой пищи жирных кислот начиная с С 20 , а также при приёме гиполипидемических лекарственных препаратов.

Регуляция

Скорость регуляции процесса β-окисления включает несколько факторов:

Скорость β-окисления зависит также от активности фермента карнитин-пальмитоилтрансферазы I (CPTI). В печени этот фермент ингибируется малонил-CoA, веществом, образующимся при биосинтезе жирных кислот .

В мышцах карнитин-пальмитоилтрансфераза I (CPTI) также ингибируется малонил-CoA. Хотя мышечная ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-CoA-карбоксилазы, синтезирующий малонил-CoA для регуляции β-окисления. Данный изофермент фосфорилируется протеинкиназой А, которая активируется в клетках под действием адреналина , и AMP-зависимой протеинкиназой и таким образом происходит его ингибирование; концентрация малонил-CoA снижается. Вследствие этого, при физической работе, когда в клетке появляется AMP , под действием адреналина активируется β-окисление, однако, его скорость зависит ещё и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается .

Нарушения процесса

Дефекты карнитиновой транспортной системы

Дефекты карнитиновой транспортной системы проявляются в ферментопатиях и дефицитных состояний карнитина в организме человека.

Дефицитные состояния карнитина

Наиболее распространены дефицитные состояния, связанные с потерей карнитина во время некоторых состояний организма:

Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса β-окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания свободных жирных кислот (СЖК) в плазме крови, мышечная слабость (миастения), а также накопление липидов .

Ферментопатии

Генетические нарушения ацил-CoA-дегидрогеназ жирных кислот средней цепи

В митохондриях имеется 3 вида ацил-CoA-дегидрогеназ , окисляющих жирные кислоты с длинной, средней или короткой цепью радикала. Жирные кислоты по мере укорочения радикала в процессе β-окисления могут последовательно окисляться этими ферментами. Генетический дефект дегидрогеназы жирных кислот со средней длиной радикала (КФ ) - MCADD (сокр. от М edium-c hain a cyl-CoA d ehydrogenase d eficiency) наиболее распространён по сравнению с другими наследственными заболеваниями - 1:15 000. Частота дефектного гена ACADM , кодирующего ацил-CoA-дегидрогеназы жирных кислот со средней длиной цепи, среди европейской популяции - 1:40. Это аутосомно-рецессивное заболевание, возникающее в результате замены нуклеотида Т (тимин) на А (аденин) в 985-й позиции гена . Проявляется в накоплении жирных кислот средней цепи (особенно каприловой) и их производных в крови и вторичным дефицитом карнитина. Характерными симптомами являются приступы рвоты , летаргическое состояние , сильнейшая некетотическая гипогликемия, вызванная обильной утилизацией глюкозы (особенно опасна для новорожденных), может развиться кома и возможен летальный исход. Большую опасность болезнь представляет у детей, так как среди них наблюдается самая большая летальность (до 60%) .

Генетические нарушения ацил-CoA-дегидрогеназ жирных кислот с очень длинной углеродной цепью

Дикарбоновая ацидурия

Дикарбоновая ацидурия заболевание, связанное с повышенной экскрецией С 6 -С 10 -дикарбоновых кислот и возникающей на этом фоне гипогликемии , однако, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является MCADD. При этом нарушается β-окисление и усиливается ω-окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот , выводимых из организма .

Синдром Цельвегера

Синдром Цельвегера или цереброгепаторенальный синдром, редкое наследственное заболевание описано американским педиатром Хансом Цельвегером (H.U. Zellweger ), которое проявляется в отсутствии пероксисом во всех тканях организма. Вследствие этого в организме, особенно в мозгу накапливаются полиеновые кислоты (С 26 -С 38), представляющие собой длиноцепочечные жирные кислоты . Примерная заболеваемость нарушениями биогенеза пероксисом спектра синдрома Цельвегера составляет 1:50 000 новорождённых в США и 1:500 000 новорождённых в Японии. Для синдрома характерны: пренатальная задержка роста; мышечная гипотония; затруднение сосания; арефлексия; долихоцефалия; высокий лоб; круглое плоское лицо; одутловатые веки; гипертелоризм; монголоидный разрез глаз; катаракта ; пигментная ретинопатия или дисплазия зрительного нерва; колобома радужки; низко расположенные ушные раковины; микрогнатия ; расщелина неба; латеральное или медиальное искривление пальцев; поражение печени (гепатомегалия (увеличение объёма печени), дисгинезия внутрипеченочных протоков, цирроз печени); поликистоз почек; нередко - тяжёлые, несовместимые с жизнью аномалии лёгких и пороки сердца; задержка психомоторного развития; судороги ; стойкая желтуха. При патоморфологическом исследовании выявляют задержку миелинизации нейронов; накопление липидов в астроцитах; в печени, почках и мозге уменьшено содержание плазмогенов; в клетках печени и других тканях организма снижено количество пероксисом, большинство пероксисомных ферментов неактивны. В крови повышена активность трансаминаз и отмечается стойкая гипербилирубинемия . Нарушения биогенеза пероксисом обусловлены мутациями в одном из 12 генов PEX , кодирующих пероксины. Мутации в этих генах ведут к аномалиям биогенеза пероксисом. Все варианты синдрома Цельвегера наследуются по аутосомно-рецессивному типу .

Ямайская рвотная болезнь

Специфическая болезнь, характеризуется сильнейшей интоксикацией, сопровождающаяся рвотой , гиповолемическим шоком, конвульсиями , гипогликемией , в тяжёлой форме может наступить кома и смертельный исход. Вызывается при употреблении незрелых либо сырых плодов Аки или блигией вкусной (Blighia sapida ), в состав которых входит производное α-аминопропановой кислоты , токсин - гипоглицин . В результате метаболизма гипоглицин инактивирует ацил-CoA-дегидрогеназу, впоследствии чего ингибируется процесс β-окисления . В присутствии гипоглицина происходит накопление главным образом бутирил-CoA, который гидролизуется до свободной масляной кислоты (бутирата). Масляная кислота в избытке попадает в кровь , косвенно вызывая гипогликемию .

Напишите отзыв о статье "Бета-окисление"

Примечания

  1. Строев Е. А. Биологическая химия: Учебник для фармац. ин-тов и фармац. фак. мед. ин-тов. - М .: Высшая школа, 1986. - 479 с.
  2. Е.С. Северин. Биохимия. - М: ГЭОТАР-МЕД, 2004. - 779 с. - ISBN 5-9231-0254-4.
  3. Березов Т. Т., Коровкин Б. Ф. Биологическая химия. - М .: Медицина, 1998. - 704 с. - ISBN 5-225-02709-1.
  4. , p. 943.
  5. Knoop, Franz (1904). «Der Abbau aromatischer Fettsäuren im Tierkörper». Beitr Chem Physiol Pathol 6 : 150–162. Проверено 2 March 2015.
  6. Houten S. M. , Wanders R. J. (англ.) // Journal of inherited metabolic disease. - 2010. - Vol. 33, no. 5 . - P. 469-477. - DOI :. - PMID 20195903.
  7. Р.Марри, Д.Греннер, П. Мейес, В. Родуэлл. Биохимия человека. - М .: Мир, 1993. - Т. I. - 384 с. - ISBN 5-03-001774-7.
  8. Нельсон Д., Кокс М. Основы биохимии Ленинджера. - М .: БИНОМ, 2011. - Т. II.
  9. Кольман. Я., Рём К. Г. Наглядная биохимия. - М .: Мир, 2011. - 469 с. - ISBN 5-03-003304-1.
  10. Singh I (February 1997). «Biochemistry of peroxisomes in health and disease». Mol. Cell. Biochem. 167 (1-2): 1–29. DOI :. PMID 9059978.
  11. Биологическая химия с упражнениями и задачами / Под ред. С.Е. Северина. - М .: ГЭОТАР-Медиа, 2011. - 624 p. - ISBN 9785970417553.
  12. Handig I et al: Inheritance of the S113L mutation within an inbred family with carnitine palmitoyltransferase enzyme deficiency. Hum. Genet. 97: 291-293, 1996. PMID 8786066.
  13. . - Москва: РОССИЙСКОЕ ОБЩЕСТВО МЕДИЦИНСКИХ ГЕНЕТИКОВ, 2013. - 18 с.
  14. P. Bowen, C. S. N. Lee, H. U. Zellweger, R. Lindenburg. A familial syndrome of multiple congenital defects. Bulletin of the Johns Hopkins Hospital, 1964; 114: 402.
  15. OMIM

Литература

  • Д.Мецлер. Биохимия. - М .: Мир, 1980. - Т. 2. - 609 p.
  • Нельсон Д., Кокс М. Основы биохимии Ленинджера. - М .: Бином, 2014. - Т. II. - 636 p. - 1700 экз. - ISBN 978-5-94774-366-1.

См. также

Отрывок, характеризующий Бета-окисление

– Ну что – пошли, «девочка Лия»? – уже с большим нетерпением спросила я.
Мне очень хотелось посмотреть эти, другие, «этажи» пока ещё хватало на это сил. Я уже успела заметить, какая большая разница была между этим, в котором мы находились сейчас, и «верхним», Стеллиным «этажом». Поэтому, было очень интересно побыстрее «окунуться» в очередной незнакомый мир и узнать о нём, по-возможности, как можно больше, потому что я совсем не была уверена, вернусь ли сюда когда-то ещё.
– А почему этот «этаж» намного плотнее чем предыдущий, и более заполнен сущностями? – спросила я.
– Не знаю... – пожала своими хрупкими плечиками Стелла. – Может потому, что здесь живут просто лишь хорошие люди, которые никому не делали зла, пока жили в своей последней жизни. Поэтому их здесь и больше. А наверху живут сущности, которые «особенные» и очень сильные... – тут она засмеялась. – Но я не говорю про себя, если ты это подумала! Хотя бабушка говорит, что моя сущность очень старая, больше миллиона лет... Это ужас, как много, правда? Как знать, что было миллион лет тому назад на Земле?.. – задумчиво произнесла девочка.
– А может быть ты была тогда совсем не на Земле?
– А где?!.. – ошарашено спросила Стелла.
– Ну, не знаю. Разве ты не можешь посмотреть?– удивилась я.
Мне тогда казалось, что уж с её-то способностями возможно ВСЁ!.. Но, к моему большому удивлению, Стелла отрицательно покачала головкой.
– Я ещё очень мало умею, только то, что бабушка научила. – Как бы сожалея, ответила она.
– А хочешь, я покажу тебе своих друзей? – вдруг спросила я.
И не дав ей подумать, развернула в памяти наши встречи, когда мои чудесные «звёздные друзья» приходили ко мне так часто, и когда мне казалось, что ничего более интересного уже никак не может быть...
– О-ой, это же красота кака-ая!... – с восторгом выдохнула Стелла. И вдруг, увидев те же самые странные знаки, которые они мне показывали множество раз, воскликнула: – Смотри, это ведь они учили тебя!.. О-о, как это интересно!
Я стояла в совершенно замороженном состоянии и не могла произнести ни слова... Учили???... Неужели все эти года я имела в своём же мозгу какую-то важную информацию, и вместо того, чтобы как-то её понять, я, как слепой котёнок, барахталась в своих мелких попытках и догадках, пытаясь найти в них какую-то истину?!... А это всё уже давным-давно у меня было «готовеньким»?..
Даже не зная, чему это меня там учили, я просто «бурлила» от возмущения на саму себя за такую оплошность. Подумать только, у меня прямо перед носом раскрыли какие-то «тайны», а я ничего и не поняла!.. Наверное, точно не тому открыли!!!
– Ой, не надо так убиваться! – засмеялась Стелла. – Покажешь бабушке и она тебе объяснит.
– А можно тебя спросить – кто же всё-таки твоя бабушка? – стесняясь, что вхожу в «частную территорию», спросила я.
Стелла задумалась, смешно сморщив свои носик (у неё была эта забавная привычка, когда она о чём-то серьёзно думала), и не очень уверенно произнесла:
– Не знаю я... Иногда мне кажется, что она знает всё, и что она очень, очень старая... У нас было много фотографий дома, и она там везде одинаковая – такая же, как сейчас. Я никогда не видела, какой она была молодой. Странно, правда?
– И ты никогда не спрашивала?..
– Нет, я думаю, она мне сказала бы, если бы это было нужно... Ой, посмотри-ка! Ох, как красиво!.. – вдруг неожиданно в восторге запищала малышка, показывая пальчиком на странные, сверкающие золотом морские волны. Это конечно же было не море, но волны и в правду были очень похожи на морские – они тяжело катились, обгоняя друг друга, как бы играясь, только на месте слома, вместо снежно-белой морской пены, здесь всё сплошь сверкало и переливалось червонным золотом, распыляя тысячами прозрачные золотистые брызги... Это было очень красиво. И мы, естественно, захотели увидеть всю эту красоту поближе...
Когда мы подошли достаточно близко, я вдруг услышала тысячи голосов, которые звучали одновременно, как бы исполняя какую-то странную, не похожую ни на что, волшебную мелодию. Это была не песня, и даже не привычная нам музыка... Это было что-то совершенно немыслимое и неописуемое... но звучало оно потрясающе.
– Ой, это же мыслящее море! О, это тебе точно понравится! – весело верещала Стелла.
– Оно мне уже нравится, только не опасно ли это?
– Нет, нет, не беспокойся! Это просто для успокоения «потерянных» душ, которым всё ещё грустно после прихода сюда... Я слушала его здесь часами... Оно живое, и для каждой души «поёт» другое. Хочешь послушать?
И я только сейчас заметила, что в этих золотых, сверкающих волнах плещутся множество сущностей... Некоторые из них просто лежали на поверхности, плавно покачиваясь на волнах, другие ныряли в «золото» с головой, и подолгу не показывались, видимо, полностью погружаясь в мысленный «концерт» и совершенно не спеша оттуда возвращаться...
– Ну, что – послушаем? – нетерпеливо подталкивала меня малышка.
Мы подошли вплотную... И я почувствовала чудесно-мягкое прикосновение сверкающей волны... Это было нечто невероятно нежное, удивительно ласковое и успокаивающее, и в то же время, проникающее в самую «глубинку» моей удивлённой и чуть настороженной души... По моей стопе пробежала, вибрируя миллионами разных оттенков, тихая «музыка» и, поднимаясь вверх, начала окутывать меня с головой чем-то сказочно красивым, чем-то, не поддающимся никаким словам... Я чувствовала, что лечу, хотя никакого полёта наяву не было. Это было прекрасно!.. Каждая клеточка растворялась и таяла в набегающей новой волне, а сверкающее золото вымывало меня насквозь, унося всё плохое и грустное и оставляя в душе только чистый, первозданный свет...
Я даже не почувствовала, как вошла и окунулась в это сверкающее чудо почти с головой. Было просто невероятно хорошо и не хотелось никогда оттуда выходить...
– Ну, всё, хватит уже! Нас задание ждёт! – ворвался в сияющую красоту напористый Стеллин голосок. – Тебе понравилось?
– О, ещё как! – выдохнула я. – Так не хотелось выходить!..
– Вот, вот! Так и «купаются» некоторые до следующего воплощения... А потом уже больше сюда не возвращаются...
– А куда же они идут? – удивилась я.
– Ниже... Бабушка говорит, что здесь место тоже надо себе заслужить... И кто всего лишь ждёт и отдыхает, тот «отрабатывает» в следующем воплощении. Думаю, это правда...
– А что там – ниже? – заинтересованно спросила я.
– Там уже не так приятно, поверь мне. – Лукаво улыбнулась Стелла.
– А это море, оно только одно или таких здесь много?
– Ты увидишь... Оно всё разное – где море, где просто «вид», а где просто энергетическое поле, полное разных цветов, ручейков и растений, и всё это тоже «лечит» души и успокаивает... только не так-то просто этим пользоваться – надо сперва заслужить.
– А кто не заслужит? Разве они живут не здесь?– не поняла я.
– Живут-то живут, но уже не так красиво... – покачала головой малышка. – Здесь так же, как на Земле – ничто не даётся даром, только вот ценности здесь совсем другие. А кто не хочет – тому и достаётся всё намного более простое. Всю эту красоту нельзя купить, её можно только заслужить...
– Ты говоришь сейчас точно как твоя бабушка, будто ты выучила её слова...– улыбнулась я.
– Так оно и есть! – вернула улыбку Стелла. – Я многое стараюсь запомнить, о чём она говорит. Даже то, что пока ещё не совсем понимаю... Но ведь пойму когда-нибудь, правда же? А тогда, возможно, уже некому будет научить... Вот и поможет.
Тут, мы вдруг увидели весьма непонятную, но очень привлекательную картинку – на сияющей, пушисто-прозрачной голубой земле, как на облаке, стояло скопление сущностей, которые постоянно сменяли друг друга и кого-то куда-то уводили, после опять возвращаясь обратно.
– А это, что? Что они там делают? – озадачено спросила я.
– О, это они всего лишь помогают приходить «новичкам», чтобы не страшно было. Это где приходят новые сущности. – Спокойно сказала Стелла.
– Ты уже видела всё это? А можем мы посмотреть?
– Ну, конечно! – и мы подошли поближе...
И я увидела, совершенно захватывающее по своей красоте, действие... В полной пустоте, как бы из ничего, вдруг появлялся прозрачный светящийся шар и, как цветок, тут же раскрывался, выпуская новую сущность, которая совершенно растерянно озиралась вокруг, ещё ничего не понимая... И тут же, ждущие сущности обнимали «новоприбывшего» сгустком тёплой сверкающей энергии, как бы успокаивая, и сразу же куда-то уводили.
– Это они приходят после смерти?.. – почему-то очень тихо спросила я.
Стелла кивнула и грустно ответила:
– Когда пришла я, мы ушли на разные «этажи», моя семья и я. Было очень одиноко и грустно... Но теперь уже всё хорошо. Я к ним сюда много раз ходила – они теперь счастливы.
– Они прямо здесь, на этом «этаже»?.. – не могла поверить я.
Стелла опять грустно кивнула головкой, и я решила, больше не буду спрашивать, чтобы не бередить её светлую, добрую душу.
Мы шли по необычной дороге, которая появлялась и исчезала, по мере того, как мы на неё ступали. Дорога мягко мерцала и как будто вела, указывая путь, будто зная, куда нам надо идти... Было приятное ощущение свободы и лёгкости, как если бы весь мир вокруг вдруг стал совершенно невесомым.
– А почему эта дорога указывает нам, куда идти? – не выдержала я.
– Она не указывает, она помогает. – Ответила малышка. – Здесь всё состоит из мысли, забыла? Даже деревья, море, дороги, цветы – все слышат, о чём мы думаем. Это по-настоящему чистый мир... наверное, то, что люди привыкли называть Раем... Здесь нельзя обмануть.
– А где же тогда Ад?.. Он тоже существует?
– О, я обязательно тебе покажу! Это нижний «этаж» и там ТАКОЕ!!!... – аж передёрнула плечиками Стелла, видимо вспомнив что-то не очень приятное.
Мы всё ещё шли дальше, и тут я заметила, что окружающее стало понемножечку меняться. Прозрачность куда-то начала исчезать, уступая место, намного более «плотному», похожему на земной, пейзажу.
– Что происходит, где мы? – насторожилась я.
– Всё там же. – Совершенно спокойно ответила малышка. – Только мы сейчас уже находимся в той части, что попроще. Помнишь, мы только что говорили об этом? Здесь в большинстве своём те, которые только что пришли. Когда они видят такой, похожий на их привычный, пейзаж – им легче воспринимать свой «переход» в этот, новый для них, мир... Ну и ещё, здесь живут те, которые не хотят быть лучше, чем они есть, и не желают делать ни малейших усилий, чтобы достичь чего-то выше.
– Значит, этот «этаж» состоит как бы из двух частей?– уточнила я.
– Можно сказать и так. – Задумчиво ответила девчушка, и неожиданно перешла на другую тему – Что-то никто здесь не обращает на нас никакого внимания. Думаешь, их здесь нет?
Оглядевшись вокруг, мы остановились, не имея ни малейшего понятия, что предпринять дальше.
– Рискнём «ниже»? – спросила Стелла.
Я чувствовала, что малышка устала. Да и я тоже была очень далеко от своей лучшей формы. Но я была почти уверена, что сдаваться она никак не собирается, поэтому кивнула в ответ.
– Ну, тогда надо немного подготовиться... – закусив губу и серьёзно сосредоточившись, заявила воинственная Стелла. – Знаешь ли ты, как поставить себе сильную защиту?
– Вроде бы – да. Но я не знаю, насколько она будет сильная. – Смущённо ответила я. Мне очень не хотелось именно сейчас её подвести.
– Покажи, – попросила девочка.
Я поняла, что это не каприз, и что она просто старается мне помочь. Тогда я попробовала сосредоточиться и сделала свой зелёный «кокон», который я делала себе всегда, когда мне нужна была серьёзная защита.
– Ого!.. – удивлённо распахнула глазёнки Стелла. – Ну, тогда пошли.
На этот раз наш полёт вниз уже был далеко не таким приятным, как предыдущий... Почему-то очень сдавило грудь и тяжело было дышать. Но понемножку всё это как бы выровнялось, и я с удивлением уставилась на открывшийся нам, жутковатый пейзаж...
Тяжёлое, кроваво-красное солнце скупо освещало тусклые, фиолетово-коричневые силуэты далёких гор... По земле, как гигантские змеи, ползли глубокие трещины, из которых вырывался плотный, тёмно-оранжевый туман и, сливаясь с поверхностью, становился похожим на кровавый саван. Всюду бродили странные, будто неприкаянные, сущности людей, которые выглядели очень плотными, почти что физическими... Они то появлялись, то исчезали, не обращая друг на друга никакого внимания, будто никого кроме себя не видели и жили лишь в своём, закрытом от остальных, мире. Вдалеке, пока что не приближаясь, иногда появлялись тёмные фигуры каких-то чудовищных зверей. Ощущалась опасность, пахло жутью, хотелось бежать отсюда сломя голову, не поворачиваясь назад...
– Это мы прямо в Аду что ли? – в ужасе от увиденного, спросила я.
– Но ты же хотела посмотреть, как это выглядит – вот и посмотрела. – Напряжённо улыбаясь, ответила Стелла.
Чувствовалось, что она ожидает какую-то неприятность. Да и ничего другого, кроме неприятностей, здесь, по-моему, просто никак не могло быть...
– А ты знаешь, иногда здесь попадаются и добрые сущности, которые просто совершили большие ошибки. И если честно, мне их очень жалко... Представляешь – ждать здесь следующего своего воплощения?!. Жуть!
Нет, я никак не могла этого представить, да и не хотела. И уж этим же самым добром здесь ну никак не пахло.
– А ты ведь не права! – опять подслушала мои мысли малышка. – Иногда сюда и, правда, попадают очень хорошие люди, и за свои ошибки они платят очень дорого... Мне их, правда, жаль...
– Неужели ты думаешь, что наш пропавший мальчик тоже попал сюда?!. Уж он-то точно не успел ничего такого дурного совершить. Ты надеешься найти его здесь?.. Думаешь, такое возможно?
– Берегись!!! – вдруг дико завизжала Стелла.
Меня расплющило по земле, как большую лягушку, и я всего лишь успела почувствовать, как будто на меня навалилась огромная, жутко воняющая. гора... Что-то пыхтело, чавкало и фыркало, расточая омерзительный запах гнили и протухшего мяса. У меня чуть желудок не вывернуло – хорошо, что мы здесь «гуляли» только сущностями, без физических тел. Иначе у меня, наверняка, случились бы самые неприятные неприятности.....
– Вылезай! Ну, вылезай же!!! – пищала перепуганная девчушка.
Но, к сожалению, это было легче сказать, чем сделать... Зловонная туша навалилась на меня всей жуткой тяжестью своего огромного тела и уже, видимо, была готова полакомиться моей свеженькой жизненной силой... А у меня, как на зло, никак не получалось от него освободиться, и в моей сжатой страхом душе уже предательски начинала попискивать паника...
– Ну, давай же! – опять крикнула Стелла. Потом она вдруг ударила чудище каким-то ярким лучом и опять закричала: – Беги!!!
Я почувствовала, что стало немного легче, и изо всех сил энергетически толкнула нависшую надо мной тушу. Стелла бегала вокруг и бесстрашно била со всех сторон уже слабеющего ужастика. Я кое-как выбралась, по привычке тяжело хватая ртом воздух, и пришла в настоящий ужас от увиденного!.. Прямо передо мной лежала огромная шипастая туша, вся покрыта какой-то резко воняющей слизью, с огромным, изогнутым рогом на широкой, бородавчатой голове.
– Бежим! – опять закричала Стелла. – Он ведь ещё живой!..
Меня будто ветром сдуло... Я совершенно не помнила, куда меня понесло... Но, надо сказать, понесло очень быстро.
– Ну и бегаешь ты... – запыхавшись, чуть выговаривая слова, выдавила малышка.
– Ой, пожалуйста, прости меня! – устыдившись, воскликнула я. – Ты так закричала, что я с перепугу помчалась, куда глаза глядят...
– Ну, ничего, в следующий раз будем поосторожнее. – Успокоила Стелла.
У меня от такого заявления глаза полезли на лоб!..
– А что, будет ещё «следующий» раз??? – надеясь на «нет», осторожно спросила я.
– Ну конечно! Они ведь живут здесь! – дружески «успокоила» меня храбрая девчушка.
– А что же мы тогда здесь делаем?..
– Мы же спасаем кого-то, разве ты забыла? – искренне удивилась Стелла.
А у меня, видно, от всего этого ужаса, наша «спасательная экспедиция» полностью вылетела из головы. Но я тут же постаралась как можно быстрее собраться, чтобы не показать Стелле, что я по-настоящему очень сильно испугалась.
– Ты не думай, у меня после первого раза целый день косы дыбом стояли! – уже веселее сказала малышка.
Мне просто захотелось её расцеловать! Каким-то образом, видя что мне стыдно за свою слабость, она умудрилась сделать так, что я сразу же снова почувствовала себя хорошо.
– Неужели ты правда думаешь, что здесь могут находиться папа и братик маленькой Лии?.. – от души удивляясь, спросила её ещё раз я.
– Конечно! Их просто могли украсть. – Уже совсем спокойно ответила Стелла.
– Как – украсть? И кто?..
Но малышка не успела ответить... Из-за дремучих деревьев выскочило что-то похлеще, чем наш первый «знакомый». Это было что-то невероятно юркое и сильное, с маленьким, но очень мощным телом, посекундно выбрасывающее из своего волосатого пуза странную липкую «сеть». Мы даже не успели пикнуть, как обе в неё дружно попались... Стелла с перепугу стала похожа на маленького взъерошенного совёнка – её большие голубые глаза были похожи на два огромных блюдца, с выплесками ужаса посерединке.
Надо было срочно что-то придумать, но моя голова почему-то была совершенно пустая, как бы я не старалась что-то толковое там найти... А «паук» (будем дальше так его называть, за неимением лучшего) тем временем довольно тащил нас, видимо, в своё гнездо, готовясь «ужинать»...
– А где же люди? – чуть ли не задыхаясь, спросила я.
– О, ты же видела – людей здесь полно. Больше чем где-либо... Но они, в большинстве, хуже, чем эти звери... И они нам не помогут.
– И что же нам теперь делать? – мысленно «стуча зубами», спросила я.
– Помнишь, когда ты показала мне твоих первых чудищ, ты ударила их зелёным лучом? – уже опять вовсю озорно сверкая глазами, (опять же, быстрее меня очухавшись!), задорно спросила Стелла. – Давай – вместе?..
Я поняла, что, к счастью, сдаваться она всё ещё собирается. И решила попробовать, потому что терять нам всё равно было нечего...
Но ударить мы так и не успели, потому что паук в тот момент резко остановился и мы, почувствовав сильный толчок, со всего маху шлёпнулись на землю... Видимо, он притащил нас к себе домой намного раньше, чем мы предполагали...
Мы очутились в очень странном помещении (если конечно это можно было так назвать). Внутри было темно, и царила полная тишина... Сильно пахло плесенью, дымом и корой какого-то необычного дерева. И только время от времени слышались какие-то слабые звуки, похожие на стоны. Как будто бы у «страдавших» уже совсем не оставалось сил…
– Ты не можешь это как-то осветить? – я тихо спросила Стеллу.
– Я уже попробовала, но почему-то не получается... – так же шёпотом ответила малышка.
И сразу же прямо перед нами загорелся малюсенький огонёк.
– Это всё, что я здесь могу. – Огорчённо вздохнула девчушка
При таком тусклом, скупом освещении она выглядела очень усталой и как бы повзрослевшей. Я всё время забывала, что этому изумительному чудо-ребёнку было всего-то ничего – пять лет!.. Наверное, её такой временами серьёзный, недетский разговор или её взрослое отношение к жизни, или всё это вместе взятое, заставляло забывать, что в реальности она ещё совсем малюсенькая девочка, которой в данный момент должно было быть до ужаса страшно. Но она мужественно всё переносила, и даже ещё собиралась воевать...
– Смотри, кто это здесь? – прошептала малышка.
И вглядевшись в темноту, я увидела странные «полочки», на которых, как в сушилке, лежали люди.
– Мама?.. Это ты, мама??? – тихонько прошептал удивлённый тоненький голосок. – Как же ты нас нашла?
Я сначала не поняла, что ребёнок обращался ко мне. Начисто позабыв, для чего мы сюда пришли, я только тогда поняла, что спрашивают именно меня, когда Стелла сильно толкнула меня кулачком в бок.
– А мы же не знаем, как их зовут!.. – прошептала я.
– Лия, а ты что здесь делаешь? – прозвучал уже мужской голос.
– Тебя ищу, папочка. – Голоском Лии мысленно ответила Стелла.
– А как вы сюда попали? – спросила я.
– Наверняка, так же, как и вы... – был тихий ответ. – Мы гуляли по берегу озера, и не видели, что там был какой-то «провал»... Вот мы туда и провалились. А там ждал вот этот зверь... Что же будем делать?
– Уходить. – Постаралась ответить как можно спокойнее я.
– А остальных? Ты хочешь их всех оставить?!. – прошептала Стелла.
– Нет, конечно же, не хочу! Но как ты собираешься их отсюда забирать?..
Тут открылся какой-то странный, круглый лаз и вязкий, красный свет ослепил глаза. Голову сдавило клещами и смертельно захотелось спать...
– Держись! Только не спи! – крикнула Стелла. И я поняла, что это пошло на нас какое-то сильное действие, Видимо, этому жуткому существу мы нужны были совершенно безвольными, чтобы он свободно мог совершать какой то свой «ритуал».
– Ничего мы не сможем... – сама себе бурчала Стелла. – Ну, почему же не получается?..
И я подумала, что она абсолютно права. Мы обе были всего лишь детьми, которые, не подумав, пустились в очень опасные для жизни путешествия, и теперь не знали, как из этого всего выбраться.
Вдруг Стелла сняла наши наложенные «образы» и мы опять стали сами собой.
– Ой, а где же мама? Ты кто?... Что ты сделала с мамой?! – возмущённо прошипел мальчик. – А ну немедленно верни её обратно!
Мне очень понравился его бойцовский дух, имея в виду всю безнадёжность нашей ситуации.
– Дело в том, что здесь не было твоей мамы, – тихо прошептала Стелла. – Мы встретили твою маму там, откуда вы «провалились» сюда. Они за вас очень переживают, потому что не могут вас найти, вот мы и предложили помочь. Но, как видишь, мы оказались недостаточно осторожными, и вляпались в ту же самую жуткую ситуацию...
– А как давно вы здесь? Вы знаете, что с нами будут делать? – стараясь говорить уверенно, тихо спросила я.
– Мы недавно... Он всё время приносит новых людей, а иногда и маленьких зверей, и потом они пропадают, а он приносит новых.
Я с ужасом посмотрела на Стеллу:
– Это самый настоящий, реальный мир, и совершенно реальная опасность!.. Это уже не та невинная красота, которую мы создавали!.. Что будем делать?
– Уходить. – Опять упорно повторила малышка.
– Мы ведь можем попробовать, правда? Да и бабушка нас не оставит, если уж будет по-настоящему опасно. Видимо пока мы ещё можем выбраться сами, если она не приходит. Ты не беспокойся, она нас не бросит.
Мне бы её уверенность!.. Хотя обычно я была далеко не из пугливых, но эта ситуация заставляла меня очень сильно нервничать, так как здесь находились не только мы, но и те, за кем мы пришли в эту жуть. А как из данного кошмара выкарабкиваться – я, к сожалению, не знала.
– Здесь нету времени, но он приходит обычно через одинаковый промежуток, примерно как были сутки на земле. – Вдруг ответил на мои мысли мальчик.
– А сегодня уже был? – явно обрадованная, спросила Стелла.
Мальчонка кивнул.
– Ну что – пошли? – она внимательно смотрела на меня и я поняла, что она просит «надеть» на них мою «защиту».
Стелла первая высунула свою рыжую головку наружу...
– Никого! – обрадовалась она. – Ух ты, какой же это ужас!..
Я, конечно, не вытерпела и полезла за ней. Там и правда был настоящий «ночной кошмар»!.. Рядом с нашим странным «местом заточения», совершенно непонятным способом, повешенные «пучками» вниз головой, висели человеческие сущности... Они были подвешены за ноги, и создавали как бы перевёрнутый букет.
Мы подошли ближе – ни один из людей не показывал признаков жизни...
– Они же полностью «откачаны»! – ужаснулась Стелла. – У них не осталось даже капельки жизненной силы!.. Всё, давайте удирать!!!
Мы понеслись, что было сил, куда-то в сторону, абсолютно не зная – куда бежим, просто подальше бы от всей этой, замораживающей кровь, жути... Даже не думая о том, что можем снова вляпаться в такую же, или же ещё худшую, жуть...
Вдруг резко потемнело. Иссиня-чёрные тучи неслись по небу, будто гонимые сильным ветром, хотя никакого ветра пока что не было. В недрах чёрных облаков полыхали ослепительные молнии, красным заревом полыхали вершины гор... Иногда набухшие тучи распарывало о злые вершины и из них водопадом лилась тёмно-бурая вода. Вся эта страшная картинка напоминала, самый жуткий из жутких, ночной кошмар....
– Папочка, родимый, мне так страшно! – тоненько взвизгивал, позабыв свою былую воинственность, мальчонка.
Вдруг одна из туч «порвалась», и из неё полыхнул ослепительно яркий свет. А в этом свете, в сверкающем коконе, приближалась фигурка очень худого юноши, с острым, как лезвие ножа, лицом. Вокруг него всё сияло и светилось, от этого света чёрные тучи «плавились», превращаясь в грязные, чёрные лоскутки.
– Вот это да! – радостно закричала Стелла. – Как же у него это получается?!.
– Ты его знаешь? – несказанно удивилась я, но Стелла отрицательно покачала головкой.
Юноша опустился рядом с нами на землю и ласково улыбнувшись спросил:
– Почему вы здесь? Это не ваше место.
– Мы знаем, мы как раз пытались выбраться на верх! – уже во всю щебетала радостная Стелла. – А ты поможешь нам вернуться наверх?.. Нам обязательно надо быстрее вернуться домой! А то нас там бабушки ждут, и вот их тоже ждут, но другие.
Юноша тем временем почему-то очень внимательно и серьёзно рассматривал меня. У него был странный, насквозь пронизывающий взгляд, от которого мне стало почему-то неловко.
– Что ты здесь делаешь, девочка? – мягко спросил он. – Как ты сумела сюда попасть?
– Мы просто гуляли. – Честно ответила я. – И вот их искали. – Улыбнувшись «найдёнышам», показала на них рукой.
– Но ты ведь живая? – не мог успокоиться спаситель.
– Да, но я уже не раз здесь была. – Спокойно ответила я.
– Ой, только не здесь, а «наверху»! – смеясь, поправила меня моя подружка. – Сюда мы бы точно не возвращались, правда же?
– Да уж, я думаю, этого хватит надолго... Во всяком случае – мне... – меня аж передёрнуло от недавних воспоминаний.
– Вы должны отсюда уйти. – Опять мягко, но уже более настойчиво сказал юноша. – Сейчас.
От него протянулась сверкающая «дорожка» и убежала прямо в светящийся туннель. Нас буквально втянуло, даже не успев сделать ни шагу, и через какое-то мгновение мы оказались в том же прозрачном мире, в котором мы нашли нашу кругленькую Лию и её маму.
– Мама, мамочка, папа вернулся! И Велик тоже!.. – маленькая Лия кубарем выкатилась к нам навстречу, крепко прижимая к груди красного дракончика.. Её кругленькая мордашка сияла солнышком, а сама она, не в силах удержать своего бурного счастья, кинулась к папе и, повиснув у него на шее, пищала от восторга.
Мне было радостно за эту, нашедшую друг друга, семью, и чуточку грустно за всех моих, приходящих на земле за помощью, умерших «гостей», которые уже не могли друг друга так же радостно обнять, так как не принадлежали тем же мирам...
– Ой, папулечка, вот ты и нашёлся! А я думала, ты пропал! А ты взял и нашёлся! Вот хорошо-то как! – аж попискивала от счастья сияющая девчушка.
Вдруг на её счастливое личико налетела тучка, и оно сильно погрустнело... И уже совсем другим голосом малышка обратилась к Стелле:
– Милые девочки, спасибо вам за папу! И за братика, конечно же! А вы теперь уже уходить будете? А ещё когда-то вернётесь? Вот ваш дракончик, пожалуйста! Он был очень хороший, и он меня очень, очень полюбил... – казалось, что прямо сейчас бедная Лия разревётся навзрыд, так сильно ей хотелось подержать ещё хоть чуть-чуть этого милого диво-дракончика!.. А его вот-вот увезут и уже больше не будет...
– Хочешь, он ещё побудет у тебя? А когда мы вернёмся, ты его нам отдашь обратно? – сжалилась над малышкой Стелла.
Лия сначала ошалела от неожиданно свалившегося на неё счастья, а потом, не в состоянии ничего сказать, так сильно закивала головкой, что та чуть ли не грозилась отвалиться...
Простившись с радостным семейством, мы двинулись дальше.
Было несказанно приятно опять ощущать себя в безопасности, видеть тот же, заливающий всё вокруг радостный свет, и не бояться быть неожиданно схваченной каким-то страшно-кошмарным ужастиком...
– Хочешь ещё погулять? – совершенно свежим голоском спросила Стелла.
Соблазн, конечно же, был велик, но я уже настолько устала, что даже покажись мне сейчас самое что ни есть большое на земле чудо, я наверное не смогла бы этим по-настоящему насладиться...
– Ну ладно, в другой раз! – засмеялась Стелла. – Я тоже устала.

Молекула жирной кислоты расщепляется в митохондрии путем постепенного отщепления двууглеродных фрагментов в виде ацетилкоэнзима А (ацетил-КоА).
Обратите внимание, что первый этап бета-окисления представляет собой взаимодействие молекулы жирной кислоты с коэнзимом А (КоА) с образованием ацил-КоА жирной кислоты. В уравнениях 2, 3 и 4 бета-углерод (второй углерод справа) ацил-КоА жирной кислоты взаимодействует с молекулой кислорода, вследствие этого бета-углерод окисляется.

В правой части уравнения 5 двууглеродная часть молекулы отщепляется, образуя ацетил-КоА, выделяющийся во внеклеточную жидкость. В то же время другая молекула КоА взаимодействует с концом оставшейся части молекулы жирной кислоты, вновь формируя ацил-КоА жирной кислоты. Сама молекула жирной кислоты в это время становится короче на 2 атома углерода, т.к. первый ацетил-КоА уже отделился от ее терминали.

Затем эта укоротившаяся молекула ацил-КоА жирной кислоты выделяет еще 1 молекулу ацетил-КоА, что приводит к укорочению исходной молекулы жирной кислоты еще на 2 атома углерода. Кроме высвобождения молекул ацетил-КоА из молекул жирных кислот в ходе этого процесса выделяются 4 атома углерода.

Окисление ацетил-КоА . Образующиеся в митохондриях в ходе процесса бета-окисления жирных кислот молекулы ацетил-КоА немедленно поступают в цикл лимонной кислоты и, взаимодействуя прежде всего с щавелево-уксусной кислотой, образуют лимонную кислоту, которая затем последовательно окисляется посредством хемоосмотическои. системы окисления митохондрий. Чистый выход реакции цикла лимонной кислоты на 1 молекулу аце-тил-КоА составляет:
СН3СОСоА + Щавелево-уксусная кислота + 2Н20 + АДФ=> 2С02 + 8Н + НСоА + АТФ + Щавелево-уксусная кислота.

Таким образом, после начального расщепления жирной кислоты с образованием ацетил-КоА окончательное их расщепление осуществляется так же, как расщепление ацетил-КоА, образовавшегося из пировиноградной кислоты в процессе метаболизма глюкозы. Образующиеся при этом атомы водорода окисляются той же системой окисления митохондрий, которая используется в процессе окисления углеводов, с образованием большого количества аденозинтрифосфата.

При окислении жирных кислот образуется огромное количество АТФ. На рисунке показано, что 4 атома водорода, высвобождающиеся при отделении ацетил-КоА от цепочки жирной кислоты, выделяются в виде ФАДН2, НАД-Н и Н+, поэтому при расщеплении 1 молекулы стеариновой кислоты образуется, кроме 9 молекул ацетил-КоА, еще 32 атома водорода. В процессе расщепления каждой из 9 молекул ацетил-КоА в цикле лимонной кислоты выделяются еще 8 атомов водорода, что в итоге дает 72 атома водорода.

Суммарно при расщеплении 1 молекулы стеариновой кислоты выделяются 104 атома водорода. Из этого общего количества 34 атома выделяются, будучи связанными с флавопротеинами, а остальные 70 высвобождаются в форме, связанной с никотинамидадениндинуклеотидом, т.е. в виде НАД-Н+ и Н+.

Окисление водорода , связанного с этими двумя типами веществ, осуществляется в митохондриях, но они вступают в процесс окисления в разных точках, поэтому окисление каждого из 34 атомов водорода, связанных с флавопротеинами, приводит к выделению 1 молекулы АТФ. Еще 1,5 молекулы АТФ синтезируется из каждых 70 НАД+ и Н+. Это дает к 34 еще 105 молекул АТФ (т.е. всего 139) при окислении водорода, отщепляющегося при окислении каждой молекулы стеариновой кислоты.

Дополнительно 9 молекул АТФ образуются в цикле лимонной кислоты (помимо АТФ, получаемой при окислении водорода), по 1 на каждую из 9 молекул метаболизирующегося ацетил-КоА. Итак, при полном окислении 1 молекулы стеариновой кислоты образуются в сумме 148 молекул АТФ. С учетом того, что при взаимодействии стеариновой кислоты с КоА на начальной стадии метаболизма этой жирной кислоты расходуются 2 молекулы АТФ, чистый выход АТФ составляет 146 молекул.

Вернуться в оглавление раздела " "

Триацилглицерины поэтапно расщепляется тканевыми липазами.

Ключевым ферментом липолиза является гормональнозависимая ТАГ-липаза. Образующиеся на этом этапе распада жиров глицерин и жирные кислоты окисляются в тканях с образованием энергии.

Различают несколько вариантов окисления жирных кислот: α - окисление, β - окисление, ω - окисление. Основным вариантом окисления жирных кислот является β - окисление. Оно наиболее активно протекает в жировой ткани, печени, почках и сердечной мышце.

Β - окисление заключается в постепенном отщеплении от жирной кислоты двух углеродных атомов в виде ацетил-КоА с освобождением энергии. Запас жирных кислот сосредоточен в цитозоле, где протекает активация жирных кислот с образованием ацил-КоА

Энергетическая эффективность бета - окисления жирных кислот складывается из энергии окисления ацетил-КоА в цикле Кребса и энергии, освобождающейся в самом бета-цикле. Энергия окисления жирной кислоты тем выше, чем длиннее её углеродная цепь. Количество молекул ацетил-КоА из данной жирной кислоты и количество образующихся из них молекул АТФ определяется по формулам:

n=N/2, где n-количество молекул ацетил-КоА, N- число атомов углерода в жирной кислоте.

Количество молекул АТФ за счёт окисления молекул ацетил-КоА = (N/2)*12

Число β - циклов окисления на один меньше, чем количество образующихся молекул ацетил-КоА, поскольку в последнем цикле масляная кислота за один цикл переходит в две молекулы ацетил-КоА, и рассчитывается по формуле

Количество β - циклов = (N/2)-1

Количество молекул АТФ в β - цикле рассчитывается, исходя из последующего окисления образовавшихся в нём НАДН 2 (3 АТФ) и ФАДН 2 (2 АТФ) по формуле

Количество молекул АТФ, образующихся в бета-циклах = ((N/2)-1)*5

2 макроэргические связи АТФ расходуются на активацию жирной кислоты

Суммарная формула для подсчёта выхода АТФ при окислении насыщенной жирной кислоты имеет вид: 17(N/2)-7.

При окислении жирных кислот с нечётным числом углеродных атомов образуется сукцинил-КоА, который вступает в цикл Кребса.

Окисление ненасыщенных жирных кислот на начальных стадиях представляет обычное бета - окисление до места двойной связи. Если эта двойная связь находится в бета - положении, то продолжается окисление жирной кислоты со второго этапа (минуя стадию восстановления ФАД→ ФАДН 2). Если двойная связь находится не бета - положении, то ферментами еноилтрансферазами связь перемещается в бета - положение. Таким образом, при окислении ненасыщенных жирных кислот образуется меньше энергии по формуле (теряется образование ФАДН2):


7(N/2)-7-2m , где m-число двойных связей.